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1

This document describes the logics of ESC/Java2. Each logic is described by: (a) a set of axioms
that constitute the logic and are thus are always included in the background predicate), and (b)
the axioms that are introduced to the background predicate when the Java program being checked
contains various constructs.
The strongest postcondition and weakest precondition calculi that are used to translate Java pro-
grams into verification conditions in a guarded command form is also discussed.
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1 Introduction

When we introduce constants, predicates, and functions, we display an indented pseudo-declaration,
which includes a signature.
When describing the untyped logic of SRC ESC/Java version 1, these signatures are just for our
intuitive understanding, since the logic of SRC ESC/Java is based upon the logic of Simplify, which
is untyped.
See Appendix A [Unsorted Construct Index], page 26 summarizes all such pseudo-declarations in
the untyped logic, as documented in Chapter 2 [Unsorted Logic], page 3.
We display axioms in itemized lists with a prefix like this:
• axiom

The mere appearance of the pseudo-declaration of an operator does not implicitly give rise to any
axiom. In the discussion of axioms, we indicate possible alternative axioms, or axioms that might
be generated in illustrative examples, like this:
− alternative axiom

To prefix expressions that are produced as part of assumptions and assertions by the translation,
we use an itemized list like this:
+ assumption
+ assertion

In this document, the use of footnotes indicates a discussion of open design issues.
This document was written under the heavy influence of Leino, Saxe, and Flanagan’s The Logic
of ESC/Java, which was in turn written under the heavy influence of Dave Detlefs’s Logic of
ESC/Modula-3. This document also includes the updated contents of Java to Guarded Command
Translation by Leino, Saxe, Stata, and Flanagan.
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2 An Unsorted Logic

2.1 Preliminaries

The ESC/Java tool attempts to find errors in Java programs by translating annotated Java pro-
grams into guarded commands, deriving strongest postconditions or weakest preconditions for those
guarded commands, and testing those preconditions with a theorem prover. We have chosen to use
Simplify as that theorem prover. Our design of the logic of ESC/Java is strongly influenced both by
the underlying logic of Simplify (of which our logic is an extension) and by efficiency considerations
specific to Simplify. In this section, we describe, more or less, what the reader needs to know about
Simplify in order to understand the logic and the motivation for some of our design decisions.

2.1.1 Terms and predicates

Simplify’s logic is untyped, but makes a strong distinction between terms and predicates. Terms
are expressions that represent values in an underlying value space. Predicates are expressions that
represent truth values.

A term in Simplify is a term constant, a variable, or an application of a function to terms. Simplify
provides some built-in term constants, such as “0” and “6”, and some built-in functions, such as
“+”. It also provides mechanisms by which users can implicitly declare constants, variables, and
functions.

A predicate in Simplify is predicate constant (like TRUE), an application of a built-in predicate
symbol to terms, an application of a boolean connective to predicates, or a quantified predicate.
Simplify’s built-in predicate symbols include “==”, “!=”, and “<”; its built-in boolean connectives
include “&&”, “||”, and “!”. (The actual symbols used by Simplify differ from those in this
document, which uses a general mathematical syntax. For example, we write x 6= y where Simplify
expects (NEQ x y). The different syntax should not create any confusion, except possibly for the
built-in predicate symbol EQ and the built-in boolean connective IFF, both of which we write as ==.
We hope the context of == will help disambiguate.) Throughout this document, the implication
operator ==> binds more loosely than other logical connectives.

While Simplify does not allow a user to declare new predicate symbols, it allows the user to designate
some function symbols to be usable where predicate symbols are expected. If f is such a function
symbol, then whenever Simplify encounters an expression f(...) where a predicate is expected, it
treats this expression, which would normally represent a term, as sugar for the predicate f(...)
== boolTrue. (Note that boolTrue is a built-in term constant, not the built-in predicate constant
TRUE.) We refer to such a function symbol f as a user-defined predicate symbol or, by even greater
abuse of the language, a predicate. In this document, we write

• foo : Predicate[bar × gorp]

to show that we intend to use the function symbol

• foo : bar × gorp 7→ value

as a user-defined predicate symbol.

2.1.2 Quantifiers and Triggering Patterns

We said above that Simplify has term constants and variables, but we weren’t specific about what
distinguishes them. Constants include not only numeric literals such as 6, but also symbolic con-
stants that the uninitiated reader might naively perceive as variables. Symbol names are considered
variables only when they are bound by a quantifier. As an example, consider the following axioms
for group theory:

− (∀x :: times(e, x) == x)
− (∀x :: times(inv(x), x) == e)

http://www.research.digital.com/SRC/esc/Simplify.html
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− (∀x, y, z :: times(x, times(y, z)) == times(times(x, y), z))

Here, x, y, and z are variables, but e is a constant. As another example, if Simplify is given the
axioms

− s < f(s)
− f(s) < t

(from which it could successfully prove the conjecture s + f (s) < 2 * t), then s and t are constants
whose values are not known, other than that they satisfy the given axioms. The axiom s < f (s), in
which s is a constant, is entirely different from

− (∀s :: s < f(s))

in which s is a variable.

A ground term is a term that contains no variables. The heart of Simplify’s proving machinery is
a set of procedures for testing the satisfiability of collections of equalities, distinctions (!=), and
arithemetic inequalities of ground terms. To handle the boolean connectives, Simplify uses case
analysis; to handle quantified expressions, Simplify uses Skolemization and matching as explained
next.

When a quantified predicate is postulated to have a definite truth value–either directly by the user
or as a result of case analysis–one of two things happens. If an existentially quantified predicate is
postulated to be TRUE, Simplify introduces a Skolem constant for each of its variables, substitutes
the Skolem constants for the variables in the body, and postulates the result. If a universally
quantified predicate is postulated to be TRUE, Simplify produces a matching rule.

A matching rule represents a universally quantified predicate in a form that enables the prover to
produce potentially relevant instantiations of its body in response to the detection of ground terms
matching certain triggering patterns. For example, postulating the axiom

− (∀x :: times(e, x) == x)

produces a matching rule with the triggering pattern times(e, x). Whenever the prover finds a
ground term of the form times(e, T), it will instantiate the body of the axiom with x := T, that
is, it will postulate times(e, T) == T.

The choice of triggering patterns for matching rules can impact both the completeness and the
performance of the prover. Simplify has heuristics for automatically choosing triggering patterns,
but allows a user to override the heuristics and specify the triggering patterns explicitly. In this
document, we use underlining to indicate the triggering patterns of matching rules. For example,
we would write the group theory identity axiom as

− (∀x :: times(e, x) == x)

to indicate that times(e, x) is used as the triggering pattern of the resulting matching rule. In order
to improve performance, we have attempted to write axioms and choose triggers in such a way as
to reduce the cost of pattern matching and to reduce the likelihood that the prover will produce
instantiations that lead to useless case splits. It might be tempting, in the quest for efficiency, to
write axioms that are actually inconsistent and to depend on the choice of restrictive triggers to
prevent the inconsistency from coming into play and causing bogus verifications to succeed; we
have resisted this temptation.

Sometimes we must use a set of terms as a triggering pattern instead of a single term. For example,
for a quantified predicate like

− (∀s, t, x :: member(x, s) ∧ subset(s, t) −→ member(x, t))

no single term is an adequate trigger, since no single term contains all the quantified variables. An
appropriate trigger is the set of terms member(x, s), subset(s, t):

− (∀s, t, x :: member(x, s) ∧ subset(s, t) −→ member(x, t))
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With this multi-trigger, the body will be instantiated upon the detection of a pair of ground terms
matching member(x, s) and subset(s, t), with the same ground term matched to s. Although
sometimes needed, multi-trigger matching is generally more expensive than single-trigger matching.

Note that triggering patterns are sets of terms, not predicates. Thus, it is not possible to specify
the following trigger:

− (∀s, t, x :: member(x, s) ∧ subset(s, t) −→ member(x, t))

Neither is it possible to specify a trigger containing a built-in predicate symbol, such as < or ==.

2.1.3 Predicate Definitions

Simplify provides a mechanism by which a defining expression may be provided as part of the
declaration of a user-defined predicate symbol P. Whenever an application of P is made equal to
or distinct from boolTrue, the defining expression is instantiated with appropriate substitutions
for the arguments and the resulting predicate or its negation, respectively, is postulated. By
using this kind of definition, instead of separately introducing a universally quantified axiom, two
sorts of efficiency improvements may result. First, we avoid invoking Simplify’s general purpose
pattern matching. Second, by instantiating the definition of a user-defined predicate only when
an application’s truth value becomes known, rather than when an application is introduced, we
may avoid gratuitous case splitting. (Of course, there is a danger that we will sometimes postpone
useful case splitting.)

When in this document we intend a given axiom (∀args :: P (args) == ...) to be the defining
expression for a user-defined predicate P, we will use the notation

• Definition: (∀args :: P (args) == ...)

2.1.4 The as Trick

In this section, we describe a technique, used in several of the axioms below, that allows us to
choose triggering patterns that Simplify can match efficiently but that will not lead to extraneous
matches.

In a world with types, a typical axiom might look like

− (∀x : X, y :: P (x, y) −→ Q(x, y))

where x is quantified over all values of type X and y is unconstrained. Since Simplify is type-free,
so is our logic. The straightforward way of encoding the axiom above would be to introduce a
predicate isX characterizing values of type X :

− (∀x, y :: isX(x) ∧ P (x, y) −→ Q(x, y))

But what should be the triggering pattern of this axiom?

If we choose P(x, y) as the triggering pattern, then Simplify is likely to instantiate the axiom with
substitutions x, y := t0, t1 even where t0 is not known to satisfy isX. The result may be to cause
the prover to do a useless case split with the cases ¬isX(t0), ¬P (t0, t1), and Q(t0, t1). Even if
P (t0, t1) is known to hold, we can get a two-way case split.

Intuitively, we want to use the axiom only when x is already known to be of the correct type–
this would be the common interpretation of the typed version of the axiom. If we can arrange
for other mechanisms to postulate isX(x) whenever we’re possibly interested in instantiating the
axiom, then we can use the terms isX(x) and P(x, y) together as a multi-trigger. This reduces the
likelihood of producing useless instantiations of the axiom, without loss of completeness. If, further,
we make sure that ground terms matching isX(x) are introduced only when they are also equated
to boolTrue, then the untyped axiom will be instantiated only as often as the typed version would
have been in a typed prover.

A disadvantage of the approach just described is that Simplify’s matching process for multi-triggers
is generally more expensive than for ordinary triggering patterns.
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Instead of introducing the predicate isX, the approach we actually take is to introduce a function
asX. Intuitively, asX casts any value into a value of type X, and is the identity on values that are
already of type X. When introducing a term t0 of type X, instead of assuming

+ isX(t0)

we assume

+ t0 == asX(t0)

This allows us to write the axiom as

− (∀x, y :: P (asX(x), y) −→ Q(asX(x), y))

Here we have a single-term trigger, which should be efficient to match. Also, since we introduce asX
only with arguments that are known to be of type X, we avoid producing irrelevant instantiations.

(We could introduce both isX and asX, in which case we could either define isX(x) by the axiom

− (∀x :: isX(x) == (x == asX(x)))

or characterize asX by the axioms

− (∀x :: isX(x) −→ x == asX(x))

− (∀y :: isX(asX(y)))

However, once we have asX, introducing isX seems redundant.)

In the example above, we replaced a one-argument predicate isX with a one-argument function
asX. We can apply a similar technique for predicates with more than one argument. For example,
instead of writing an axiom of the form

− (∀x, y, z :: isXwrtZ(x, z) ∧ P (x, y, z) −→ Q(x, y, z))

we may introduce a function asXwrtZ, assume x == asXwrtZ(x, z) when we would have assumed
isXwrtZ(x, z), and write the axiom as

− (∀x, y, z :: P (asXwrtZ(x, z), y, z) −→ Q(asXwrtZ(x, z), y, z))

Multi-argument predicates like isXwrtZ are used to express more intricate properties than types
can.

2.1.5 Maps

ESC/Java uses maps to represent instance variables, arrays, and lock sets. A map is like a function,
but is a first-order value in the logic. The logic includes the following functions on maps:

• . [ . ] : map \times value \mapsto value

• store : map \times value \times value \mapsto map

The [ ] function is sometimes called select. The semantics of [ ] and store are given by the following
axioms:

• (∀m, i, x :: store(m, i, x)[i] == x)

• (∀m, i, j, x :: i 6= j −→ store(m, i, x)[j] == m[j])

ESC/Java uses Simplify’s built-in select and store functions. The second of these axioms is treated
specially by Simplify in that the case splits suggested by it are given some priority over case splits
suggested by ordinary axioms.
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2.2 Types and Subtypes

2.2.1 Types

Java types are ordinary values in the logic of ESC/Java. Although the logic is untyped, we infor-
mally think of these values as having type “type”.
The built-in types in Java give rise to the following type constants:
• boolean : type
• char : type
• byte : type
• short : type
• int : type
• long : type
• float : type
• double : type

In addition, declarations of classes and interfaces give rise to type constants. Each class or interface
declaration

class T ...

or
interface T ...

introduces a type identifier
• T : type

Here and throughout this document, we assume that identifiers denoting types, fields, and variables
have been unique-ified. Throughout this document, when we refer to declarations, we include
both user-provided declarations and built-in declarations, like the classes String and Object, the
interface Cloneable.
All type constants appear together in an axiom that postulates them all to be different:
• DISTINCT(Object, boolean, char, byte, short, int, long, float, double, Cloneable, ..., String,

..., T, ...)

This axiom is called the Distinct Types Axiom.

2.2.2 The subtype Predicate

The logic includes a subtype predicate:

<: : Predicate[type \times type]

The predicate t0 <: t1 means that t0 is a subtype of t1. The operator <: binds as tightly as
arithmetic relations such as <.
The following axioms are sound and complete in the sense that for any named class or interface
types A and B,

|= A <: B if and only
if |- A <: B

where |- refers to provability based on these axioms, and |= refers to the model given by Java’s
semantics.
In some cases we also need to prove negative subtype statements such as

|- not( A <: B )

To illustrate the need for proving such statements, see Section B.4 [Try-Catch Example], page 30.
Our current axiomatization of negative subtype statements is quite incomplete – we currently only
include the antisymmetric axiom. We plan to investigate this issue more thoroughly in the future.
The subtype relation is reflexive and transitive:



Chapter 2: An Unsorted Logic 8

• (∀t :: t <: t)
• (∀t0, t1, t2 :: t0 <: t1 ∧ t1 <: t2 −→ t0 <: t2)

The subtype relation is also antisymmetric.
• (∀t0, t1 :: t0 <: t1 ∧ t1 <: t0 −→ t0 == t1)

1

A class or interface declaration gives rise to axioms about where the type introduced fits into the
subtype ordering.
For each class declaration

class C extends D implements J, K, ...

(where the absence of an extends clause is taken as sugar for extends Object), we add the following
axioms to the background predicate:
• C <: D

• C <: J

• C <: K

• ...

We could include an axiom that describes the supertypes of C
− (∀t :: C <: t −→ t == C ∨D <: t ∨ J <: t ∨K <: t ∨ ...)

For the built-in class Object, this would yield2

− (∀t :: Object <: t −→ t == Object)

For each interface declaration
interface I extends J, K, ...

we add the following axioms3:
• I <: Object

• I <: J

• I <: K

• ...

We could include an axiom describing the supertypes of I, as above, but see no immediate need for
it.
For each final type T (that is, a final class or one of the primitive types boolean, char, byte, short,
int, long, float, or double), we add the following axiom, which says that T has no proper subtypes:
• (∀t :: t <: T == (t == T ))

To see why this axiom is useful, see Section B.2 [Final Type Axioms Example], page 29.

2.2.3 Disjointness of Incomparable

This section is not implemented. It may be useful for examples such as Section B.4 [Try-Catch
Example], page 304

1 An alternative would be to experiment with Simplify’s built-in ordering theory, but we have concerns about its
reliability and its impact on performance.

2 Do we need this?
3 This is redundant, but probably not harmful, if the the interface declaration bears an explicit extends clause.
4 The axioms in this section are similar to some axioms introduced in the logic of ESC/Modula-3 to address a problem

that arose in a program verification. It is not clear whether the problem has since been addressed by other mechanisms.
While we can contrive examples where these axioms would be necessary for ESC/Java verifications, we don’t know if
such examples will arise naturally. We may choose not to exclude the material in this section without impact on the
rest of the logic. In particular, there are no uses the functions classDown and asChild other than those described in
this section.
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For any two classes, either one is a subtype of the other, or they have no subtypes in common.
The most obvious ways of axiomatizing this fact seem likely to lead to poor prover performance,
for reasons that we will not describe further. The ESC/Java logic includes weaker axioms implying
that distinct explicitly declared subclasses of any class (including Object) have no subtypes in
common.
To this end, the logic includes two functions:
• classDown : type \times type \mapsto type
• asChild : type \times type \mapsto type

Intuitively, if t0 is a proper subclass of t2, then classDown(t2, t0) is the direct subclass of t2 that
is a superclass of t0. Consider a class A with distinct explicitly declared direct subclasses B and C,
and suppose that BB is any subclass of B and CC is any subclass of C. Then, classDown(A, BB) is
B and classDown(A, CC) is C. If Simplify ever explores a case in which BB and CC are equal,
it will infer by congruence closure that classDown(A, BB) and classDown(A, CC) are equal, and
thus that B and C are equal, in contradiction to the [distinctTypesAxiom], page 7. Of course, if BB
and CC were explicitly declared classes, we could infer their distinction directly from the Distinct
Types Axiom. However, BB and CC might be the unknown dynamic types of objects with declared
types B and C, respectively.
We want to formalize the definition of classDown. To do so, we must first formalize the notion of
being a direct subclass. We could introduce a predicate isDirectSubclass, characterize classDown
by the axiom
− (∀t0, t1, t2 :: t0 <: t1 ∧ isDirectSubclass(t1, t2) −→ classDown(t2, t0) == t1)

and let each class declaration
class C extends D ...

give rise to the axiom
− isDirectSubclass(C, D)

Instead, we avoid use of a multi-trigger by employing Section 2.1.4 [The as Trick], page 5: We
characterize classDown by the axiom
• (∀t0, t1, t2 :: t0 <: asChild(t1, t2) −→ classDown(t2, t0) == asChild(t1, t2))

and for each class declaration
class C extends D ...

we introduce the axiom
• C == asChild(C,D)

2.2.4 Array Types

Array types do not give rise to type constants. Instead, the logic includes a function to produce
an array type from an element type.

array : type \mapsto type

If t represents a type T, then array(t) represents the array type T[].
Sometimes in this document we make reference to an arbitrary type T, which may or may not be
an array type. For simplicity, we will denote its type T, even though the type of T may in fact not
be represented by a type constant, but by an expression array(...).
All array types are subtypes of Cloneable:
• (∀t :: array(t) <: Cloneable)

Note that since Cloneable is a subtype of Object, every array type is, by transitivity, also a
subtype of Object. Conversely, Object and Cloneable are the only non-array supertypes of array
types, so for each class declaration
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class T ...

(except for the built-in class Object) or interface declaration

interface T ...

(except for the built-in interface Cloneable), we could add the axiom5

− (∀t :: ¬(array(t) <: T ))

An alternative approach would be to generate the axiom

• (∀t0, t1 :: array(t0) <: t1 −→ t1 == array(elemType(t1)) ∨ Cloneable <: t1)

where elemType is defined below. Technically, this is more complete, but it seems more likely to
lead to unfruitful case splits.

The function array has a left inverse:

• elemType : type \mapsto type

with axiom6

• (∀t :: elemType(array(t)) == t)

Intuitively, a type t is an array type if and only if t == array(elemType(t)). We could introduce
a predicate isArrayType with the axiom

− (∀t :: isArrayType(t) == (t == array(elemType(t))))

Instead, we simply write t == array(elemType(t)) wherever we would have written
isArrayType(t)7.

As stated in the following axiom, the subtypes of an array type T[] are the array types whose
element types are subtypes of T. A use of this axiom is described in Section B.2 [Final Type
Axioms Example], page 29 and Section B.3 [Array Element Subtype Example], page 30.

• (∀t0, t1 :: t0 <: array(t1) == (t0 == array(elemType(t0)) ∧ elemType(t0) <: t1))

2.3 Types of Values

2.3.1 The is Predicate

To reason about the dynamic types of values, the logic includes the following predicate:

• is : Predicate[value× type]

For each variable identifier (global variable, parameter, or result value) v of type T, we assume

+ is(v, T )

as part of the precondition of the method being checked, after each method call that modifies v,
and as an invariant of each loop that modifies v.

5 This is not implemented because it is not clear we need to reason about the not-subtype relation.

Technically, we need this axiom only for direct subclasses of Object, direct subinterfaces of Cloneable, and direct
subinterfaces of Object other than Cloneable.

6 Is this the right pattern?
7 While Object and Cloneable are not array types, they are supertypes of all array types. The non-object primitive

types boolean, char, etc. are not supertypes of any array types, but we have not given axioms to that effect, because
we are not sure they are needed in practice. The axioms we just gave, however, may be useful, as Section B.1 [Array
Type-Constant Axioms Example], page 28 show.
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2.3.2 Casting

The logic contains a function that converts a value to a value of a specified type:
• cast : value \times type \mapsto value
• (∀x, t :: is(cast(x, t), t))

If the value is already of the specified type, then casting leaves it unchanged:
• (∀x, t :: is(x, t) −→ cast(x, t) == x)

In cases where casting in Java can fail, the translation produces appropriate checks. These checks
will be described in another document.
The axioms above do not completely capture the semantics of casting as specified by Java. For
example, Java specifies that casting an int to a short preserves the value modulo 2^16. We
propose to omit such additional axioms about casting until the need for them arises.

2.3.3 Types of Primitive Values

2.3.3.1 Booleans

For booleans, the logic contains two distinct constants:
• boolFalse : value

• boolTrue : value

• boolFalse 6= boolTrue

In fact, these are the only boolean values. We could express this fact with the axiom
− (∀x :: is(x, boolean) == (x == boolFalse ∨ x == boolTrue))

Since this axiom has the potential to lead to useless case splits, we’re reluctant to use it. In
Section 2.6.3 [Reflections of Predicates into Term Space], page 21, we’ll say more about our approach
to handling booleans.

2.3.3.2 Integers

To reason about the ranges of integer values, the logic includes the constants:
• longFirst : value
• intFirst : value
• intLast : value
• longLast : value

and the following axioms:
• (∀x :: is(x, char) == (0 ≤ x ∧ x ≤ 65535))
• (∀x :: is(x, byte) == (−128 ≤ x ∧ x ≤ 127))
• (∀x :: is(x, short) == (−32768 ≤ x ∧ x ≤ 32767))
• (∀x :: is(x, int) == (intF irst ≤ x ∧ x ≤ intLast))
• (∀x :: is(x, long) == (longF irst ≤ x ∧ x ≤ longLast))

The reason for giving longFirst, intFirst, intLast, and longLast as symbolic constants instead of
exact values is that we don’t want to assume the underlying theorem prover to be capable of dealing
properly with such large constants8.
Digression. The axioms above may seem unsound given that not all numbers between, say, -32768
and 32767 are integers: If we translated the Java expression 2.0 < x && x < 3.0 (where x is a Java
float) directly into 2 < x ∧ x < 3 (where < is Simplify’s built-in comparison operator), then

8 Will the use of constants like 65535 and 127 cause performance problems because of Simplify’s integer programming
heuristic?
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the axioms above would let us conclude is(x, int), which would be bad. To avoid this problem, we
considered introducing a predicate isMathInt to characterize the mathematical integers and writing
the axioms above as:
− (∀x :: is(x, char) == (0 ≤ x ∧ x ≤ 65535 ∧ isMathInt(x)))
− ...

We have rejected this approach on account of an infelicity in the implementation of Simplify: Sim-
plify’s complete decision procedure for rational linear inequalities is extended by an incomplete
heuristic for integer inequalities. Unfortunately, this heuristic is applied indiscriminately rather
than only to terms that are somehow designated as integers. For example, Simplify will find the
conjunction 2 < x && x < 3 to be inconsistent, even if x corresponds to a Java float. Conse-
quently, translating Java’s floating-point < to Simplify’s built-in < is untenable even with isMathInt.
We have chosen to give a quite weak axiomatization of Java’s floating point operators (see Sec-
tion 2.6.3.3 [Reflected Floating-Point Comparisons], page 22), and in particular to use Simplify’s
built-in comparison operators only for integers. Therefore, we see no need for isMathInt. We could,
of course, include isMathInt anyhow, for aesthetics, but we would then need to include such axioms
as
− (∀x, y :: isMathInt(x) ∧ isMathInt(y) −→ isMathInt(x + y))

and to generate the assumption isMathInt(c) for every integer literal c occurring in the program.
(End of Digression.)
Complications arise when the Java program being checked contains explicit integer constants of
large magnitude. Our plan for treating such constants is to replace all explicit constants whose
magnitude exceeds some threshold (say, 1000000) with symbolic constants, and to add to the
background predicate sufficient axioms to establish the ordering of those symbolic constants with
respect to each other, the threshold and its negation, and the symbolic constants longFirst, intFirst,
intLast, and longLast. For example, if the program contains the explicit constants
• -12000000

• 72000

• 800000

• 12000000

• 123456789

• 1234567890123456789L

then, using 1000000 as a threshold, the constants -12000000, 12000000, 123456789, and
1234567890123456789L will be replaced by the symbolic constants neg12000000, pos12000000,
pos123456789, and pos1234567890123456789, and the following axioms will be added to the back-
ground predicate:
− longFirst < intFirst

− intFirst < neg12000000

− neg12000000 < -1000000
− 1000000 < pos12000000

− pos12000000 < pos123456789

− pos123456789 < intLast

− intLast < pos1234567890123456789

− pos1234567890123456789 < longLast

Note that in the absence of such large constants, we will have the following axioms:
• longFirst < intFirst

• intFirst < -1000000
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• 1000000 < intLast

• intLast < longLast

The axioms we have described for casts and integer values are sufficient to guarantee, for example,
that casting a short to an int does not change its value. Also, when an int is in the range
-32768..32767, casting it to a short does not change its value. For an int that is not already a
short, the axioms guarantee that casting it to a short will yield a result in the range -32768..32767,
but don’t specify the exact result even though the Java specification does9.

2.3.3.3 Floating Point Values

The ESC/Java logic is weak in its treatment of floating point values. The following are not imple-
mented10.

− (∀x :: is(x, int) −→ is(x, double))
− (∀x :: is(x, float) −→ is(x, double))

Note that, despite these properties, int and float are not subtypes of double. (If they were, ar-
ray(int) and array(float) would be subtypes of array(double), according to the axioms about array
in Section 2.2.4 [Array Types], page 9.)

2.3.4 Types of Objects

Every non-null object has a unique dynamic type, as determined by the typeof operator:

• typeof : value \mapsto type

A value is of a reference type T if the value is null or if its dynamic type is a subtype of T11:

• (∀x, t :: t <: Object −→ is(x, t) == (x == null ∨ typeof(x) <: t)))

We said in Section 2.3.1 [The is Predicate], page 10 that the translation will introduce a precondition
assumption is(v, T) for any parameter v of type T. For the this parameter of an instance method
of a class C, the translation introduces the following stronger precondition:

+ this 6= null ∧ typeof(this) <: C

2.3.4.1 Instantiable Types

The dynamic type of a non-null object must be an instantiable type. The logic could includes a
predicate

• instantiable : Predicate[type]

and the axiom12

− (∀x :: instantiable(typeof(x)))

For each interface declaration

interface T ...

or abstract class declaration

abstract class T ...

the background predicate contains the following axiom13:

− !instantiable(T)

9 It remains to be seen if practice calls for more axioms.
10 What are the triggers?
11 Will this produce useless case splits?
12 Is this the right trigger?
13 Is instantiable useful in practice? We can omit the predicate instantiable and its associated axioms without impact

on the remainder of the logic.
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2.3.4.2 Types of Instance Variables

ESC/Java models instance variables (fields) as maps from objects to values. Where in Java one
writes the r-value x.f, the translation writes f [x].
To reason about the dynamic types of values of fields, the logic includes the following function:
• asField : map \times type \mapsto map

To encode that a field identifier f has range type T, the translation introduces the assumption
+ f == asField(f, T)

as part of the precondition of the method being checked, after each method call that modifies f,
and as an invariant of each loop that modifies f. This is another application of the aforementioned
Section 2.1.4 [The as Trick], page 5. The logic includes the axiom
• (∀f, t, x :: is(asF ield(f, t)[x], t))

Notice that this axiom does not include an antecedent requiring that x be a non-null object of the
class that declares f. We believe that this treatment of a fields as total maps with their declared
range types is harmless to the soundness of the logic, and may be beneficial to prover efficiency.

2.3.4.3 Types of Array Elements

ESC/Java models the state of all arrays using a single global variable called elems. Where in Java
one writes the r-value a[i], the translation writes elems[a][i]. This uses the same select function
as above for fields, twice14.
To reason about the dynamic types of array elements, the logic includes the following function:
• asElems : map \mapsto map

Applying yet again the Section 2.1.4 [The as Trick], page 5, the translation introduces the assump-
tion
+ elems == asElems(elems)

as part of the precondition of the method being checked, after each method call that modifies elems,
and as an invariant of each loop that modifies elems. This assumption is used to supply a trigger
for the following axiom:
• (∀e, a, i :: is(asElems(e)[a][i], elemType(typeof(a))))

Notice that this axiom does not include antecedents requiring that a be a non-null array object
and that i be in bounds. We believe that this treatment is harmless to the soundness of the logic,
and may be beneficial to prover efficiency.

2.4 Allocation

In this section, we introduce machinery for reasoning about the allocation of objects, and in partic-
ular for showing that a newly allocated object is distinct from any object reachable from program
variables prior to its allocation. Although our motivating discussions are long, the resulting axioms
are few and simple.

2.4.1 Allocation Times of Objects

Consider the following method:
void m(T x)
T y = new T();
/* assert x != y; */

14 An alternative to using a single global variable elems would be to use a variable objectElems to model all arrays of
objects and additional variables for each of the primitive types, with intElems modeling all arrays of ints, etc. Having
separate variables may improve prover efficiency, but would complicate the translation into guarded commands (and
the logic itself). We propose to keep things simple for the initial version of ESC/Java.
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Intuitively, the reason that the assertion succeeds is that x is already allocated at the start of the
method body, whereas the result of the constructor call new T() is an object not yet allocated
before the call. To formalize this, we introduce a program variable alloc, which somehow models
which objects have been allocated. As we shall see below, we actually model alloc as a time. We
also introduce a predicate

• isAllocated : Predicate[value× time]

where isAllocated(x, aa) means that object x has been allocated prior to time aa. For each variable
identifier (global variable, parameter, or result value) v of an object type, the translation assumes

+ isAllocated(v, alloc)

as part of the precondition of the method being checked, after each method call that modifies v,
and as an invariant of every loop that modifies v. Finally, the translation includes the following
postcondition as part of the specification of new T():

• ¬isAllocated(result, alloc) ∧ isAllocated(result, alloc′)

where alloc and alloc’ are the values of alloc before and after the call, respectively, and result is the
value returned by the call. The guarded command translation of the method m is thus something
like:

assume isAllocated(x, alloc) && ... ;
var y in

assume y == null ;
var result, alloc’ in

assume ! isAllocated(result,alloc) && isAllocated(result, alloc’)&& ... ;
alloc = alloc’;
y = result

end ;
assert x != y
end

The verification condition for this piece of code is:

• isAllocated(x, alloc) ∧ ... −→ (∀y :: y == null −→ (∀result, alloc′ ::
¬isAllocated(result, alloc) ∧ ... −→ x! = result))

so the verification succeeds.

Now, consider the following method:

void n(T x)
p();
T y = new T();
/* assert x != y; */

where p() denotes a method call that modifies alloc. In order to verify the assertion, we must be
able to infer that x is still allocated after the call to p. One possible approach would be for the
translation to explicitly assume

+ isAllocated(x, alloc)

after the call [oh, how we wish we had hollow square bullets...]. We reject this approach, since it
would require generating such an assumption for each variable in the program, instead of just those
that are modified by the call. Another approach would be for the translation add to the following
as a postcondition of every method that modifies alloc:

+ (∀v :: isAllocated(v, alloc) −→ isAllocated(v, alloc′))
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We actually use yet a different approach, which we hope will achieve better efficiency by making use
of Simplify’s built-in Simplex algorithm. First, we let alloc denote a time. Second, we introduce a
function from objects to their allocation times:
• vAllocT ime : value 7→ time

Third, we define isAllocated in terms of vAllocTime and Simplify’s built-in < operator:
• Definition: (∀x, aa :: isAllocated(x, aa) == (vAllocT ime(x) < aa))

Fourth and finally, the translation assumes
+ alloc0 ≤ alloc

after every method call that modifies alloc (where alloc0 is the value of alloc before the call), and as
an invariant of every loop that modifies alloc (where alloc0 is the value of alloc before the loop)15.

2.4.2 Closure of Allocatedness under Field Access

In Section 2.4.1 [Allocation Times of Objects], page 14, we introduced rules by which ESC/Java
can verify that a newly allocated object is distinct from previous values of program variables. We
may also need to verify that newly allocated objects are distinct from all objects accessible prior
to allocation, as in the following example:

void m(U u)
T y = new T();
/* assert u.f != y; */

Indeed, it is an invariant of the language that fields of allocated objects are allocated. In this
subsection, we show how ESC/Java formalizes this invariant.
One possible way to formalize the invariant would be to introduce a predicate isFieldClosed, char-
acterized by the following axiom:
− (∀x, f, aa :: isF ieldClosed(f, aa) ∧ isAllocated(x, aa) −→ isAllocated(f [x], aa))

and to have the translation to assume, at appropriate points, isFieldClosed(f, alloc) for each field
f whose range type is an object type.
The question now is: What are “appropriate points”? It would be nice not to have to re-assume
isFieldClosed(f, alloc) after calls to a method m that does not modify f, even if m modifies alloc.
Consider an object x such that isAllocated(x, alloc) holds after some call to m, and suppose we
need to infer that isAllocated(f [x], alloc) holds. We proceed by case analysis: If isAllocated(x,
alloc0) holds, where alloc0 is the allocation time before the call to m, then by the axiom above
isAllocated(f [x], alloc0) holds. From m’s postcondition alloc0 <= alloc, the definition of isAllocated,
and the transitivity of <, the desired inference is possible. Suppose, on the other hand, that
¬isAllocated(x, alloc0). Then, f [x] == null, since f was not changed. Hence, we’re done.
There are two problems with the approach just described. First, it may give rise to unnecessary
case splits. Second, it inhibits an optimization that we’d like to do: If a method m modifies a field
f only at newly allocated objects, we don’t want to require that f be included in the modifies
clause of m’s specification. Thus, we cannot assume, as we did in the informal proof above, that f
is null at unallocated objects. Instead, the model we use is that, as seen by the caller, the method
m allocates objects whose f fields already have the “right” values. Indeed, m might be seen as
allocating a “pre-existing” cyclic structure of objects. Hence, what we would like to formalize is
not merely the invariant that the current value of alloc is closed under the current value of f, but
also that all future values of alloc are closed under the current value of f.
Because of the things we have just discussed, the logic includes the function
• fClosedT ime : map 7→ time

15 Is it worth attempting to detect cases where method calls leave alloc unchanged as far as the caller is concerned?
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where fClosedT ime(f) is a time beyond which all allocation times are closed under f :
• (∀x, f, aa :: fClosedT ime(f) < aa ∧ isAllocated(x, aa) −→ isAllocated(f [x], aa))

Like the axioms about the types of fields and array elements, this axiom does not have an antecedent
restricting the values at which maps are applied. For each field identifier f, the translation assumes
+ fClosedTime(f ) < alloc

as part of the precondition of the method being checked, after each method call that modifies f,
and as an invariant of every loop that modifies f.
Note that we could instead have introduced the predicate isFieldClosed mentioned above, but with
the axiom:
− (∀f, aa :: isF ieldClosed(f, aa) == fClosedT ime(f) < aa)

Then the solid-bulleted axiom and translation assumption above could have been written using
isFieldClosed. Since we see no need to use isFieldClosed as a triggering pattern, it seems more
straightforward to use < directly. (Note that the solid-bulleted axiom does use isAllocated in a
trigger. This is why we include the function isAllocated in the logic, instead of replacing it every
with its definition.)

2.4.3 Closure of Allocatedness under Array Access

The preceding subsection introduced machinery that formalizes the language invariant that f [x]
is allocated whenever x is allocated. We use similar machinery to formalize the invariant that
elems[a][i] is allocated whenever a is allocated.
The logic includes the function
• eClosedT ime : map 7→ time

and the axiom
• (∀a, e, i, aa :: eClosedT ime(e) < aa ∧ isAllocated(a, aa) −→ isAllocated(e[a][i], aa))

The translation assumes
+ eClosedT ime(elems) < alloc

as part of the precondition of the method being checked, after each method call that modifies elems,
and as an invariant of each loop that modifies elems.

2.5 Locking

ESC/Java checks for race conditions and deadlocks. The translation introduces a global map
variable LS, called the lock set, that characterizes the set of locks held by the current thread; a lock
mu is held whenever LS[mu] == boolTrue. (Recall that in Java, a lock is exactly the same thing
as an object.) To check for race conditions, the programmer supplies annotations telling which
shared variables are protected by which locks. Whenever a shared variable is accessed and it is
necessary to check whether its lock mu is in the lock set, the translation generates the check
• assertLS[mu] == boolTrue

To check for deadlocks, the programmer supplies annotations defining a relation lockLess (written
as < in annotations) on locks:
• lockLess : Predicate[value× value]

This lockLess relation is transitively closed:
• (∀x0, x1, x2 :: (lockLessx0x1) ∧ (lockLessx1x2) => (lockLessx0x2))

Esc/Java verifies that locks are only acquired by any thread in ascending order. If the lockLess
order is acyclic, then this guarantees absence of deadlock. (If the programmer erroneously specifies
a cyclic ordering, then deadlock may result, but no other error-checking property of ESC/Java is
affected.)
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It is convenient to assume the invariant that LS has a maximal element. To see that this assumption
is sound, note that the existence of a maximal element follows if LS is totally ordered, finite, and
nonempty. Since LS can be extended only by the acquisition of a lock greater than all locks
currently held, and since a method can acquire only one new lock at a time, it follows that if LS is
initially totally ordered and finite, it will remain so throughout the execution of any ESC/Java-legal
program. Finally, it is harmless to assume that LS initially contains a sentinel element smaller than
any lock acquired during the execution.
To reason about which variables denote lock sets, the logic includes a function
• asLockSet : map 7→ map

and the translation assumes as a precondition of the method being checked that LS is a valid lock
set:
+ LS == asLockSet(LS)

In addition, the logic includes a function for extracting the maximum of a lock set:
• lockSetMax : map 7→ value

• (∀S :: asLockSet(S)[lockSetMax(asLockSet(S))] == boolTrue)

The translation assumes as a precondition of the method being checked that every lock in the lock
set is allocated16:
+ (∀mu :: LS[mu] −→ isAllocated(mu, alloc))

Since there are no unmatched acquires or releases in Java, the value of LS is left unchanged by
method calls and loops. Hence, there is no reason to repeat this assumption later in the translation
of the method being checked.
The translation generates
+ lockLess(lockSetMax(LS), this) ∨ LS[this] == boolTrue

as a precondition of every call to a synchronized non-static method, and generates
+ lockLess(lockSetMax(LS), T ) ∨ LS[T ] == boolTrue

as a precondition of every call to a synchronized static method of a class T. If the method being
checked is synchronized, then the translation assumes the precondition
+ LS[this] == boolTrue

if the method is non-static and
+ LS[T ] == boolTrue

if the method is a static method of class T.
A synchronized block

synchronized (mu) S

is translated into the guarded command
assert lockLess(lockSetMax(LS),mu) || LS[mu]== boolTrue ;
var oldLS in

assume oldLS == LS ;
var newLS in

assume(lockLess(lockSetMax(LS), mu) && mu== lockSetMax(newLS)) ||
(LS[mu] == boolTrue && newLS == LS);

assumenewLS == store(LS, mu,boolTrue) ;
assume newLS == asLockSet(newLS);
LS= newLS ;
S (* actually, the translation of S *)

16 WHY???
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end ;
LS = oldLS

end

The assumption
• assume(lockLess(lockSetMax(LS),mu) ∧ mu == lockSetMax(newLS)) ∨ (LS[mu] ==

boolTrue ∧ newLS == LS)

is used to check calls and synchronized blocks within S. The assumption
• assumenewLS == store(LS,mu, boolTrue)

is used to check shared-variable accesses in S. The function store is explained in Section 2.1.5
[Maps], page 6.

2.6 Domain-specific Axioms

Pretty much every occurrence of a built-in operator of Java gives rise to an occurrence of a corre-
sponding function in the translation. For many of these functions, there are no axioms specifying
their semantics, at least in the initial version of ESC/Java. This section explains those functions
that are given a semantics.

2.6.1 Properties of Arrays

A deference of the length field of an array is translated into an application of the function ar-
rayLength:
• arrayLength : value 7→ value

Every array length is a non-negative int:
• (∀a :: 0 ≤ arrayLength(a) ∧ is(arrayLength(a), int))

The rest of this subsection describes four functions and one predicate used to simplify the translation
of Java’s new operator on array types, including multi-dimensional array types:
• shapeOne : value 7→ shape

• shapeMore : value× shape 7→ shape

• arrayParent : value 7→ value

• arrayPosition : value 7→ value

• arrayFresh : Predicate[value× time× time×map× shape× type× value]

The functions shapeOne and shapeMore construct array shapes. Intuitively, a shape is a nonempty
list of integers, representing the dimensions of a rectangular array. For example, shapeOne(6) would
be the shape of a one-dimensional array of length 6, and shapeMore(12, shapeOne(7)) would be
the shape of a two-dimensional array of length 12, each of whose elements is a one-dimensional
array of length 7.
Execution of the Java construct new T[E1][E2]...[En] allocates 1 + 1 ∗ E1 + 1 ∗ E1 ∗ E2 + ... +
1 ∗ E1 ∗ E2 ∗ ... ∗ E(n− 1) distinct arrays. The functions arrayParent and arrayPosition are used
to ensure that these arrays are in fact distinct, as described below.
The translation of the Java construct new T[E1][E2]...[En] includes an assumption like
+ arrayFresh(a, alloc, alloc′, elems, shapeMore(E1, shapeMore(E2, ...(shapeOne(En))...)), array(array(...(array(T ))...)), zero)

where a is the newly allocated array, alloc and alloc’ are the allocation times just before and after
the allocation of a, elems is the global variable modeling the state of all arrays (see Section 2.3.4.3
[Types of Array Elements], page 14), and zero is the zero-equivalent value of type T.
Informally, the predicate arrayFresh(a, aa, bb, e, s, T, v) states that a is a non-null array
allocated between the allocation times aa and bb, of type T and shape s, whose leaf elements in
e are v. By “leaf elements in e”, we mean values of the form e[a][i] in case s is a one-dimensional
shape, values of the form e[e[a][i]][j] in case s is a two-dimensional shape, etc. Formally, arrayFresh
is defined by the following axioms:
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• (∀a, aa, bb, e, n, s, T, v :: arrayFresh(a, aa, bb, e, shapeMore(n, s), T, v) == aa ≤
vAllocT ime(a) ∧ vAllocT ime(a) < bb ∧ a! = null ∧ typeof(a) == T ∧ arrayLength(a) ==
n ∧ (∀i :: arrayFresh(e[a][i], aa, bb, e, s, elemType(T ), v) ∧ arrayParent(e[a][i]) ==
a ∧ arrayPosition(e[a][i]) == i))

• (∀a, aa, bb, e, n, T, v :: arrayFresh(a, aa, bb, e, shapeOne(n), T, v) == aa ≤ vAllocT ime(a) ∧
vAllocT ime(a) < bb∧a! = null∧typeof(a) == T∧arrayLength(a) == n∧(∀i :: e[a][i] == v))

Note that these axioms contain nested quantifications, which themselves have triggering patterns.
Note also that the inner quantifications do not include antecedents requiring that i be in bounds.
As we have remarked before, we believe that this treatment is harmless to the soundness of the
logic, and may be beneficial to prover efficiency.

To see how the use of the functions arrayParent and arrayPosition ensure that the arrays allocated as
part of a multi-dimensional array allocation are distinct, consider the following program fragment:

int[][][] a = new int[10][10][10];
/* assert a[3] != a[4]; */
/* assert a[3][7] != a[4][7]; */
/* assert a[3] != a[4][7]; */

The translation and the logic together ensure, after the allocation, that
arrayPosition(elems[a][3]) == 3 and that arrayPosition(elems[a][4]) == 4, so
when the prover considers the possibility that the first assertion fails (that is, that
elems[a][3] == elems[a][4], it will derive the contradiction 3 == 4. The translation
and logic also ensure that arrayParent(elems[elems[a][3]][7]) == elems[a][3] and that
arrayParent(elems[elems[a][4]][7]) == elems[a][4], so when the prover considers the possibility
that second assertion fails, it will derive elems[a][3] == elems[a][4], which leads to the
contradiction 3 == 4 as just explained. Finally, the translation and logic ensure that
typeof(elems[a][3]) == array(array(int)) and that typeof(elems[emes[a][4]][7]) == array(int).
As discussed in Section B.1 [Array Type-Constant Axioms Example], page 28, the axioms in
Section 2.2.4 [Array Types], page 9 guarantee that the types array(array(int)) and array(int)
are distinct, so when the prover considers the possibility that the third assertion fails, it will
derive a contradiction17.

2.6.2 Arithmetic Functions on Integers

The Java +, -, *, <, <=, ==, !=, >=, and > operators on integers are translated to the corresponding
built-in operators of Simplify, which bring Simplify’s equality and simplex decision procedures into
play.

The Java / and % operators on integers are translated into the functions integralDiv and inte-
gralMod, respectively:

• integralDiv : value× value 7→ value

• integralMod : value× value 7→ value

The appropriate axioms are18:

• (∀i, j :: integralDiv(i, j) ∗ j + integralMod(i, j) == i)

• (∀i, j :: 0 < j −→ 0 ≤ integralMod(i, j) ∧ integralMod(i, j) < j)

• (∀i, j :: j < 0 −→ j < integralMod(i, j) ∧ integralMod(i, j) ≤ 0)

• (∀i, j :: integralMod(i + j, j) == integralMod(i, j))

• (∀i, j :: integralMod(j + i, j) == integralMod(i, j))

17 In Section 2.3.4.3 [Types of Array Elements], page 14, we discussed the possibility of splitting elems into multiple
variables (objectElems, intElems, etc.). Such a change to the logic would complicate these axioms.

18 Are these axioms and triggers well chosen?
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2.6.3 Reflections of Predicates into Term Space

The next set of axioms we discuss relates to an issue that arises in the translation. The guarded
command language makes a strong distinction between predicates and terms. A guard must be a
predicate; the right-hand side of an assignment is a term. Simplify maintains a similar separation;
it defines built-in predicates, and everything else is a term. Java, on the other hand, makes no such
strong distinction. The condition of a conditional statement is just an expression of type boolean;
the same expression could occur on the right-hand side of an assignment. Consequently, depending
on the context in which a Java expression occurs, its translation produces either a predicate or a
term. For example, the guard of the Java statement

if (x < y) ...

can translate into the predicate x < y, while the right-hand side of the assignment statement
b = x < y;

must translate into a term intLess(x, y). The function intLess (axiomatized below) is a reflection
of < into the term space. The logic includes the following functions reflecting Java operators that
produce booleans:
• boolAnd : Predicate[value× value]
• boolOr : Predicate[value× value]
• boolNot : Predicate[value]
• boolEQ : Predicate[value× value]
• floatingEQ : Predicate[value× value]
• floatingLE : Predicate[value× value]
• floatingLE : Predicate[value× value]

In this section, we discuss these functions and their axiomatizations.

2.6.3.1 Reflected Boolean Connectives

We start by describing a design decision related to the treatment of booleans. Recall that in
Section 2.3.3.1 [booleanConstants], page 11 we remarked that we hesitated to include the axiom
− (∀x :: is(x, boolean) == (x == boolFalse ∨ x == boolTrue))

for fear that it would lead to irrelevant case splits. Therefore, we take a different approach. Instead
of assuming that there are only two values of type boolean, we axiomatize the reflected versions of
the boolean connectives in such a way that the value boolTrue corresponds to the Java predicate
true, and all values distinct from boolTrue correspond to the Java predicate false.
• Definition: (∀b, c :: boolAnd(b, c) == (b == boolTrue ∧ c == boolTrue))
• Definition: (∀b, c :: boolOr(b, c) == (b == boolTrue ∨ c == boolTrue))
• Definition: (∀b :: boolNot(b) == (b 6= boolTrue))
• Definition: (∀b, c :: boolEQ(b, c) == ((b == boolTrue) == (c == boolTrue)))

(Recall that some occurrences of == denote Simplify’s built-in predicate symbol EQ and other
denote Simplify’s built-in boolean connective IFF. Also recall that Simplify allows applications of
user-defined predicate symbols to be used syntactically either as terms or as predicates. In the case
of the latter, Simplify implicitly compares them with boolTrue. For clarity, since our focus in this
section is to describe reflections into term space, we use the functional form.)

2.6.3.2 Reflected Integer and Object Comparisons

To compare objects or integers for equality, the translator to Simplify generates the Simplify pred-
icates EQ, < etc.
The Java operator instanceof is reflected by the user-defined predicate symbol is, which we have
already described in Section 2.3.1 [The is Predicate], page 10.



Chapter 2: An Unsorted Logic 22

2.6.3.3 Reflected Floating-Point Comparisons

Comparing floating-point values is not the same as comparing integers, for two reasons. For one
thing, the Java expression r == r, where r is a Java float or double, sometimes doesn’t evaluate to
true, since r may be NaN (Not-a-Number). The other difference arises from an infelicitous feature
in the implementation of Simplify, described in a digression in [isMathIntDigression], page 11.
Thus, it is untenable to axiomatize floatingEQ, floatingLE, and floatingLE in the obvious way:
− Definition: (∀x, y :: floatingEQ(x, y) == (x == y))
− Definition: (∀x, y :: floatingLE(x, y) == (x < y))
− Definition: (∀x, y :: floatingLE(x, y) == (x ≤ y))

We could include such axioms as
− Definition: (∀x, y :: floatingEQ(x, y) == (¬isNaN(x) ∧ ¬isNan(y) ∧ x == y))

and axioms relating floatingEQ, floatingLE, and floatingLE to the floating-point arithmetic func-
tions. However, we propose to omit all such axioms from the initial version of ESC/Java and to
add them only as the need becomes evident.

2.6.3.4 Lifting Predicate Terms to Predicate Space

When a Java boolean variable b occurs in a context where a Java predicate is expected, as in the
program fragment

if (b) ...

the translation into guarded commands lifts the boolean term b into predicate space by comparing
it to boolTrue:
• ifb == boolTrue 7→ ...

When a boolean expression occurs in such a context, we have a choice of how much of the “com-
putation” to do in predicate space and how much to do in term space. For example, we might
translate

if (b && x < y) ...

in any of the following ways:
• if boolAnd(b, intLess(x, y)) == boolTrue \mapsto ...
• if b == boolTrue && intLess(x,y) == boolTrue \mapsto ...
• ifb == boolTrue ∧ x < y 7→ ...

A description of the exact translation algorithm, which also includes treatment of short-circuit
boolean operators and expressions with side effects, is beyond the scope of this document.
In order to avoid the need to lower predicates into term space, users are not allowed to use genuine
predicate expressions (namely, quantified expressions) as subexpressions of terms. For example,
specifications cannot contain expressions like
• store(myBooleanArray, i, (forall...))

As it happens, we plan not to allow users to explicitly write store at all. However, see the discussion
of the conditional operator in the next section.

2.6.3.5 Reflecting the Conditional Operator

Occurrences of the Java conditional operator ? : in executable Java code pose no problems–the
translation can handle these just as it handles short-circuit boolean operators and expressions with
side effects. On the other hand, occurrences of the conditional operator in specifications will in
general require a reflected operator.
• termConditional : value× value× value 7→ value

• (∀x, y :: termConditional(boolTrue, x, y) == x)
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• (∀b, x, y :: b 6= boolTrue −→ termConditional(b, x, y) == y)

An alternative would be to write the one axiom19

− (∀b, x, y :: (b == boolTrue ∧ termConditional(b, x, y) == x) ∨ (b! =
boolTrue ∧ termConditional(b, x, y) == y))

Since we are introducing the function termConditional for use in the translation of specifications,
the translation of executable code may also benefit from using it.
Note that if the boolean expression B in the specification expression B ? X : Y is allowed to contain
a quantified expression when the types of X and Y are not boolean, then the translation will be
rather difficult since quantified expressions are fundamentally predicates and there is no direct
mechanism for lowering predicates into term space. We therefore propose to restrict conditional
expressions from containing such guards.

2.6.4 Other Domain-Specific Axioms

There is a host of standard Java library classes, such as String, Thread, and Reflection, whose
specifications, one can imagine, would require extending the logic of ESC/Java with more functions
and axioms. We don’t know to what extent we will need to specify these classes in order to do
useful extended static checking of their clients. For example, to prove that the program fragment

ch = "hello".toCharArray()[2];

doesn’t cause an array index out-of-bounds error, we may need to introduce a function stringLength
in order to specify the method String.toCharArray and also to provide special treatment for
String literals in the translation of Java to guarded commands. Other examples may require an
axiomatization of stringLength that says that all String lengths are non-negative. We propose to
add such functions and axioms only as the need becomes evident.

19 Which is best?
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3 Many-Sorted Logics

Discussion of new logics.
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4 Calculi

Discussion of ESC/Java2’s strongest postcondition and weakest precondition calculi for translating
Java into verification conditions via a guarded command language.

4.1 Translation to Guarded Command

4.2 Strongest Postcondition Calculus

Discussion of ESC/Java2’s strongest postcondtion calculus for translating Java into verification
conditions via a guarded command language.

4.3 Weakest Precondition Calculus

Discussion of ESC/Java2’s weakest precondition calculus for translating Java into verification con-
ditions via a guarded command language.
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Appendix A Index of Constructs in Unsorted Logic

From Section 2.1.5 [Maps], page 6:
• .[.] : map× value 7→ value

• store : map× value× value 7→ map

From 〈undefined〉 [types], page 〈undefined〉:
• boolean : type
• char : type
• byte : type
• short : type
• int : type
• long : type
• float : type
• double : type

From Section 2.2.2 [The subtype Predicate], page 7:
• <:: Predicate[type× type]

From Section 2.2.3 [Disjointness of Incomparable], page 8:
• classDown : type× type 7→ type

• asChild : type× type 7→ type

From Section 2.2.4 [Array Types], page 9:
• array : type \mapsto type
• elemType : type \mapsto type

From Section 2.3.1 [The is Predicate], page 10:
• is : Predicate[value× type]

From Section 2.3.2 [Casting], page 11:
• cast : value× type 7→ value

From Section 2.3.3.1 [booleanConstants], page 11:
• boolFalse : value
• boolTrue : value

From Section 2.3.3.2 [integerConstants], page 11:
• longFirst : value
• intFirst : value
• intLast : value
• longLast : value

From Section 2.3.4 [Types of Objects], page 13:
• typeof : value 7→ type

• instantiable : Predicate[type]

From Section 2.3.4.2 [Types of Instance Variables], page 14:
• asF ield : map× type 7→ map

From Section 2.3.4.3 [Types of Array Elements], page 14:
• asElems : map 7→ map
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From Section 2.4.1 [Allocation Times of Objects], page 14:
• isAllocated : Predicate[value× time]
• vAllocT ime : value 7→ time

From Section 2.4.2 [Closure of Allocatedness under Field Access], page 16:
• fClosedT ime : map 7→ time

From Section 2.4.3 [Closure of Allocatedness under Array Access], page 17:
• eClosedT ime : map 7→ time

From Section 2.5 [Locking], page 17:
• lockLess : Predicate[value× value]
• asLockSet : map 7→ map

• lockSetMax : map 7→ value

From Section 2.6.1 [Properties of Arrays], page 19:
• arrayLength : value 7→ value

• shapeOne : value 7→ shape

• shapeMore : value× shape 7→ shape

• arrayParent : value 7→ value

• arrayPosition : value 7→ value

• arrayFresh : Predicate[value× time× time×map× shape× type× value]

From Section 2.6.2 [Arithmetic Functions on Integers], page 20:
• integralDiv : value× value 7→ value

• integralMod : value× value 7→ value

From Section 2.6.3 [Reflections of Predicates into Term Space], page 21:
• boolAnd : Predicate[value× value]
• boolOr : Predicate[value× value]
• boolNot : Predicate[value]
• boolEQ : Predicate[value× value]
• floatingEQ : Predicate[value× value]
• floatingLE : Predicate[value× value]
• floatingLE : Predicate[value× value]

From Section 2.6.3.5 [Reflecting the Conditional Operator], page 22:
• termConditional : value× value× value 7→ value
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Appendix B Motivating Examples, Functions, and
Constants

B.1 Array Type-Constant Axioms Example

This example is out-of-date, and may no longer be relevant.
We give an example to motivate the axioms in Section 2.2.4 [Array Types], page 9 that distinguish
primitive types from array types, such as
• int 6= array(elemType(int))

Consider the program fragment
a[i][j] = 6;
/* assert a[i][j] == 6; */

where a is a variable of type a[][]. The translation turns this into a guarded command like
• elems = store(elems, elems[a][i], store(elems[elems[a][i]], j, 6)) ;
• assert elems[elems[a][i]][j] == 6

(For simplicity, we have left out the bounds checks.) The verification condition associated with this
guarded command is:

store(elems,
elems[a][i],
store(elems[elems[a][i]], j, 6))

[store(elems,elems[a][i],store(elems[elems[a][i]],j, 6))[a][i]]
[j] == 6

Suppose we know elems[a][i] 6= a. Then, we can simplify the red underlined select expression to:
• elems[a]

so that the entire verification condition becomes:
store(elems, elems[a][i], store(elems[elems[a][i]], j, 6))[elems[a][i]][j] == 6

Since elems[a][i] == elems[a][i], we can now simplify another select of store expression, reducing
the verification condition to:
• store(elems[elems[a][i]],j, 6))
• [j] == 6

Since j == j, this reduces to:
• 6 == 6

which is true.
But we needed elems[a][i] 6= a. We have that typeof(elems[a][i]) == array(int), whereas
typeof(a) == array(array(int)). Hence, it suffices to know that these two types are different.
We end by showing how the axioms from Section 2.2.4 [Array Types], page 9 can help. Suppose
that Simplify explores a potential satisfying assignment in which the two types are postulated to
be equal:

0. array(int) == array(array(int))

By the Section 2.2.4 [Array Types], page 9 axiom
• 1. (∀t :: elemType(array(t)) == t)

we know that
• 2. elemType(array(int)) == int

and
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• 3. elemType(array(array(int))) == array(int)

From 0, it follows by congruence closure that

• 4. elemType(array(int)) == elemType(array(array(int)))

and from 2, 3, and 4, it follows that

• 5. int == array(int)

From 2 and 5, we have

• 6. elemType(int) == int

From 5 and 6, we have

• 7. int == array(elemType(int))

contradicting the axiom

• 8. int != array(elemType(int))

given in Section 2.2.4 [Array Types], page 9.

Notice that to do the verification in this example, Simplify must consider and refute the case that
elems[a][i] 6= a. The select of store axiom

• (∀m, i, j, x :: i 6= j −→ store(m, i, x)[j] == m[j])

will suggest the relevant case split, and give that case split a relatively high priority. However, we
could avoid the case split altogether by changing the logic to split elems into multiple variables, as
discussed in a remark in Section 2.3.4.3 [Types of Array Elements], page 14. If we did so, then the
program fragment considered in this example would be translated into the guarded command

intElems = store(intElems,objectElems[a][i], store(intElems[objectElems[a][i]], j, 6)) ;
assert intElems[objectElems[a][i]][j] == 6

and the corresponding verification condition would be

store(intElems,
objectElems[a][i],
store(intElems[objectElems[a][i]],j, 6))

[objectElems[a][i]]
[j] == 6

and the verification can complete with no case splits and without the need for axiom 8. However,
we would still need to perform a case split and to use axiom 8 for a similar example involving a
3-dimensional array.

B.2 Final Type Axioms Example

We give an example to motivate the final type axioms in Section 2.2.2 [The subtype Predicate],
page 7. Consider the method:

void f(T[] a, T b) \
a[0] = b;

\

Verifying this method requires ensuring that b is a subtype of the element type of a (which is
non-trivial, since the element type of a may be a subtype of T). Simplify is given that:

typeof(a) <: array(T);
typeof(b) <: T;

and needs to prove that:

typeof(b) <: elemType(typeof(a));

From the array axiom triggered on the first antecedent, we have:
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typeof(a) == array(elemType(typeof(a))) &&
elemType(typeof(a)) <: T;

If T is a final type, then the final type axiom is triggered, and yields that:
elemType(typeof(a)) == T;

and then the second antecedent yields the desired consequent.

B.3 Array Element Subtype Example

Considering the following variant of example 1:
void f(T[][] a, T[] b) \
a[0] = b;

\

Verifying this method requires ensuring that b is a subtype of the element type of a (which is
non-trivial, since the element type of a may be a subtype of T). Simplify is given that:

typeof(a) <: array(array(T));
typeof(b) <: array(T);

and needs to prove that:
typeof(b) <: elemType(typeof(a));

From the array axiom triggered on the first antecedent, we have:
typeof(a) == array(elemType(typeof(a))) &&
elemType(typeof(a)) <: array(T);

From the array axiom triggered on the last line, we have:
elemType(typeof(a)) == array(elemType(elemType(typeof(a)))) &&
elemType(elemType(typeof(a))) <: T;

If T is a final type, then the final type axiom is triggered, and yields that:
elemType(elemType(typeof(a))) == T;
elemType(typeof(a)) == array(T);

and hence the desired consequent holds. Note that one affect of the array axiom is to state that
arrays of final classes are final.

B.4 A Try/Catch Example

Considering the following example (from test8/trycatch2.java)
class Try2 \
void m1() throws Throwable \
int x, y;
Throwable t;
try \
x = 0;
// assume typeof(t) == type(Throwable);
// assume t != null;
throw t;

\ catch (RuntimeException t3) \
x = 3;

\
// assert x == 0;

\
\

To verify this class, Esc/Java needs to prove that
not (Throwable <: RuntimeException)

This motivates the need for the antisymmetry axiom.
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Appendix C List of Possible Experiments

To be filled in.
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Appendix D Logics

This appendix contains the raw source of every logic described in this document.
Section D.1 [Unsorted Logics], page 32 contains material relating to the original unsorted, Simplify-
centric, object logic of SRC ESC/Java version 1. Section D.1.1 [Original Logic], page 32 contains
the original unsorted logic. Section D.1.2 [Additional Axioms Introduced in Calvin and Houdini],
page 43 contains all additional axioms that were added by various parties at SRC to the unsorted
logics of the SRC tools Calvin and Houdini. Section D.1.3 [Additional Axioms Introduced in
ESC/Java2], page 43 contains all additional axioms that have been added to ESC/Java2 by David
Cok and Joe Kiniry.
Section D.2 [Many-Sorted Logics], page 46 contains a new many-sorted logics developed by Joseph
Kiniry, Cesare Tinelli, and Patrice Chalin. These logics are primarily being developed for use with
SMT-LIB based provers but can also be used within the PVS higher-order prover. They are an
experimental feature and not yet supported in ESC/Java2. These logics have been realised in PVS
and we intend to realise them as well in the Maude logical framework.

D.1 Unsorted Logics

D.1.1 Original Logic

(PROMPT_OFF)
;----------------------------------------------------------------------
; "Universal", or class-independent part, of the background predicate

; === ESCJ 8: Section 0.4

(BG_PUSH (FORALL (m i x) (EQ (select (store m i x) i) x)))

(BG_PUSH (FORALL (m i j x)
(IMPLIES (NEQ i j)
(EQ (select (store m i x) j)

(select m j)))))

; === ESCJ 8: Section 1.1

(DEFPRED (<: t0 t1))

; <: reflexive
(BG_PUSH
(FORALL (t)
(PATS (<: t t))
(<: t t)))

; a special case, for which the above may not fire

(BG_PUSH (<: |T_java.lang.Object| |T_java.lang.Object|))

; <: transitive
(BG_PUSH
(FORALL (t0 t1 t2)
(PATS (MPAT (<: t0 t1) (<: t1 t2)))
(IMPLIES (AND (<: t0 t1) (<: t1 t2))
(<: t0 t2))))
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;anti-symmetry
(BG_PUSH
(FORALL
(t0 t1)
(PATS (MPAT (<: t0 t1) (<: t1 t0)))
(IMPLIES (AND (<: t0 t1) (<: t1 t0)) (EQ t0 t1))))

; primitive types are final

(BG_PUSH (FORALL (t) (PATS (<: t |T_boolean|))
(IMPLIES (<: t |T_boolean|) (EQ t |T_boolean|))))
(BG_PUSH (FORALL (t) (PATS (<: t |T_char|))
(IMPLIES (<: t |T_char|) (EQ t |T_char|))))
(BG_PUSH (FORALL (t) (PATS (<: t |T_byte|))
(IMPLIES (<: t |T_byte|) (EQ t |T_byte|))))
(BG_PUSH (FORALL (t) (PATS (<: t |T_short|))
(IMPLIES (<: t |T_short|) (EQ t |T_short|))))
(BG_PUSH (FORALL (t) (PATS (<: t |T_int|))
(IMPLIES (<: t |T_int|) (EQ t |T_int|))))
(BG_PUSH (FORALL (t) (PATS (<: t |T_long|))
(IMPLIES (<: t |T_long|) (EQ t |T_long|))))
(BG_PUSH (FORALL (t) (PATS (<: t |T_float|))
(IMPLIES (<: t |T_float|) (EQ t |T_float|))))
(BG_PUSH (FORALL (t) (PATS (<: t |T_double|))
(IMPLIES (<: t |T_double|) (EQ t |T_double|))))

; (New as of 12 Dec 2000)
; primitive types have no proper supertypes

(BG_PUSH (FORALL (t) (PATS (<: |T_boolean| t))
(IMPLIES (<: |T_boolean| t) (EQ t |T_boolean|))))
(BG_PUSH (FORALL (t) (PATS (<: |T_char| t))
(IMPLIES (<: |T_char| t) (EQ t |T_char|))))
(BG_PUSH (FORALL (t) (PATS (<: |T_byte| t))
(IMPLIES (<: |T_byte| t) (EQ t |T_byte|))))
(BG_PUSH (FORALL (t) (PATS (<: |T_short| t))
(IMPLIES (<: |T_short| t) (EQ t |T_short|))))
(BG_PUSH (FORALL (t) (PATS (<: |T_int| t))
(IMPLIES (<: |T_int| t) (EQ t |T_int|))))
(BG_PUSH (FORALL (t) (PATS (<: |T_long| t))
(IMPLIES (<: |T_long| t) (EQ t |T_long|))))
(BG_PUSH (FORALL (t) (PATS (<: |T_float| t))
(IMPLIES (<: |T_float| t) (EQ t |T_float|))))
(BG_PUSH (FORALL (t) (PATS (<: |T_double| t))
(IMPLIES (<: |T_double| t) (EQ t |T_double|))))

; === ESCJ 8: Section 1.2

(BG_PUSH
(FORALL (t0 t1 t2)
(PATS (<: t0 (asChild t1 t2)))
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(IMPLIES
(<: t0 (asChild t1 t2))
(EQ (classDown t2 t0) (asChild t1 t2)))))

; === ESCJ 8: Section 1.3

; new

(BG_PUSH
(<: |T_java.lang.Cloneable| |T_java.lang.Object|))

(BG_PUSH
(FORALL (t)
(PATS (array t))
(<: (array t) |T_java.lang.Cloneable|)))

(BG_PUSH
(FORALL (t)
(PATS (elemtype (array t)))
(EQ (elemtype (array t)) t)))

(BG_PUSH
(FORALL (t0 t1)
(PATS (<: t0 (array t1)))
(IFF (<: t0 (array t1))
(AND

(EQ t0 (array (elemtype t0)))
(<: (elemtype t0) t1)))))

; === ESCJ 8: Section 2.1

(DEFPRED (is x t))

(BG_PUSH
(FORALL (x t)
(PATS (cast x t))
(is (cast x t) t)))

(BG_PUSH
(FORALL (x t)
(PATS (cast x t))
(IMPLIES (is x t) (EQ (cast x t) x))))

; === ESCJ 8: Section 2.2

(BG_PUSH (DISTINCT |bool$false| |@true|))

; === ESCJ 8: Section 2.2.1

(BG_PUSH (FORALL (x)
(PATS (is x |T_char|))
(IFF (is x |T_char|) (AND (<= 0 x) (<= x 65535)))))
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(BG_PUSH (FORALL (x)
(PATS (is x |T_byte|))
(IFF (is x |T_byte|) (AND (<= -128 x) (<= x 127)))))

(BG_PUSH (FORALL (x)
(PATS (is x |T_short|))
(IFF (is x |T_short|) (AND (<= -32768 x) (<= x 32767)))))

(BG_PUSH (FORALL (x)
(PATS (is x |T_int|))
(IFF (is x |T_int|) (AND (<= intFirst x) (<= x intLast)))))

(BG_PUSH (FORALL (x)
(PATS (is x |T_long|))
(IFF (is x |T_long|) (AND (<= longFirst x) (<= x longLast)))))

(BG_PUSH (< longFirst intFirst))
(BG_PUSH (< intFirst -1000000))
(BG_PUSH (< 1000000 intLast))
(BG_PUSH (< intLast longLast))

; === ESCJ 8: Section 2.3

(BG_PUSH
(FORALL (x t)
(PATS (MPAT (<: t |T_java.lang.Object|) (is x t)))
(IMPLIES (<: t |T_java.lang.Object|)
(IFF (is x t)

(OR (EQ x null) (<: (typeof x) t))))))

; === ESCJ 8: Section 2.4

(BG_PUSH
(FORALL (f t x) (PATS (select (asField f t) x))
(is (select (asField f t) x) t)))

; === ESCJ 8: Section 2.5

(BG_PUSH
(FORALL (e a i) (PATS (select (select (asElems e) a) i))
(is (select (select (asElems e) a) i)

(elemtype (typeof a)))))

; === ESCJ 8: Section 3.0

(DEFPRED (isAllocated x a0) (< (vAllocTime x) a0))

; === ESCJ 8: Section 3.1

(BG_PUSH
(FORALL (x f a0) (PATS (isAllocated (select f x) a0))
(IMPLIES (AND (< (fClosedTime f) a0)

(isAllocated x a0))
(isAllocated (select f x) a0))))
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; === ESCJ 8: Section 3.2

(BG_PUSH
(FORALL (a e i a0) (PATS (isAllocated (select (select e a) i) a0))
(IMPLIES (AND (< (eClosedTime e) a0)

(isAllocated a a0))
(isAllocated (select (select e a) i) a0))))

; === ESCJ 8: Section 4

; max(lockset) is in lockset

(BG_PUSH
(FORALL (S)
(PATS (select (asLockSet S) (max (asLockSet S))))
(EQ
(select (asLockSet S) (max (asLockSet S)))
|@true|)))

; null is in lockset (not in ESCJ 8)

(BG_PUSH
(FORALL (S)
(PATS (asLockSet S))
(EQ (select (asLockSet S) null) |@true|)))

(DEFPRED (lockLE x y) (<= x y))

(DEFPRED (lockLT x y) (< x y))

; all locks in lockset are below max(lockset) (not in ESCJ 8)

(BG_PUSH
(FORALL (S mu)
(IMPLIES
(EQ (select (asLockSet S) mu) |@true|)
(lockLE mu (max (asLockSet S))))))

; null precedes all objects in locking order (not in ESCJ 8)

(BG_PUSH
(FORALL (x)
(PATS (lockLE null x) (lockLT null x) (lockLE x null) (lockLT x null))
(IMPLIES
(<: (typeof x) |T_java.lang.Object|)
(lockLE null x))))

; === ESCJ 8: Section 5.0

(BG_PUSH
(FORALL (a)
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(PATS (arrayLength a))
(AND (<= 0 (arrayLength a))

(is (arrayLength a) |T_int|))))

(DEFPRED (arrayFresh a a0 b0 e s T v))

(BG_PUSH
(FORALL (a a0 b0 e n s T v)
(PATS (arrayFresh a a0 b0 e (arrayShapeMore n s) T v))
(IFF
(arrayFresh a a0 b0 e (arrayShapeMore n s) T v)
(AND

(<= a0 (vAllocTime a))
(isAllocated a b0)
(NEQ a null)
(EQ (typeof a) T)
(EQ (arrayLength a) n)
(FORALL (i)
(PATS (select (select e a) i))
(AND
(arrayFresh (select (select e a) i) a0 b0 e s (elemtype T) v)
(EQ (arrayParent (select (select e a) i)) a)
(EQ (arrayPosition (select (select e a) i)) i)))))))

(BG_PUSH
(FORALL (a a0 b0 e n T v)
(PATS (arrayFresh a a0 b0 e (arrayShapeOne n) T v))
(IFF
(arrayFresh a a0 b0 e (arrayShapeOne n) T v)
(AND

(<= a0 (vAllocTime a))
(isAllocated a b0)
(NEQ a null)
(EQ (typeof a) T)
(EQ (arrayLength a) n)
(FORALL (i)
(PATS (select (select e a) i))
(AND
(EQ (select (select e a) i) v)))))))

; === code to ensure that (isNewArray x) ==> x has no invariants

; arrayType is distinct from all types with invariants (due to the
; generated type-distinctness axiom)

(BG_PUSH
(EQ arrayType (asChild arrayType |T_java.lang.Object|)))

(BG_PUSH
(FORALL (t)
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(PATS (array t))
(<: (array t) arrayType)))

(BG_PUSH
(FORALL (s)
(PATS (isNewArray s))
(IMPLIES (EQ |@true| (isNewArray s))
(<: (typeof s) arrayType))))

; === ESCJ 8: Section 5.1

(BG_PUSH
(FORALL (i j) (PATS (integralMod i j) (integralDiv i j))
(EQ (+ (* (integralDiv i j) j) (integralMod i j))

i)))

(BG_PUSH
(FORALL (i j) (PATS (integralMod i j))
(IMPLIES (< 0 j)
(AND (<= 0 (integralMod i j))

(< (integralMod i j) j)))))

(BG_PUSH
(FORALL (i j) (PATS (integralMod i j))
(IMPLIES (< j 0)
(AND (< j (integralMod i j))

(<= (integralMod i j) 0)))))

(BG_PUSH
(FORALL (i j)
(PATS (integralMod (+ i j) j))
(EQ (integralMod (+ i j) j)

(integralMod i j))))

(BG_PUSH
(FORALL (i j)
(PATS (integralMod (+ j i) j))
(EQ (integralMod (+ j i) j)

(integralMod i j))))

; to prevent a matching loop
(BG_PUSH
(FORALL (x y)
(PATS (* (integralDiv (* x y) y) y))
(EQ (* (integralDiv (* x y) y) y) (* x y))))

; === ESCJ 8: Section 5.2

(DEFPRED (boolAnd a b)
(AND
(EQ a |@true|)
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(EQ b |@true|)))

(DEFPRED (boolEq a b)
(IFF
(EQ a |@true|)
(EQ b |@true|)))

(DEFPRED (boolImplies a b)
(IMPLIES
(EQ a |@true|)
(EQ b |@true|)))

(DEFPRED (boolNE a b)
(NOT (IFF
(EQ a |@true|)
(EQ b |@true|))))

(DEFPRED (boolNot a)
(NOT (EQ a |@true|)))

(DEFPRED (boolOr a b)
(OR
(EQ a |@true|)
(EQ b |@true|)))

; Not in ESCJ8, but should be

(BG_PUSH
(FORALL (x y)
(PATS (integralEQ x y))
(IFF
(EQ (integralEQ x y) |@true|)
(EQ x y))))

(BG_PUSH
(FORALL (x y)
(PATS (stringCat x y))
(AND (NEQ (stringCat x y) null)

(<: (typeof (stringCat x y)) |T_java.lang.String|))))

(BG_PUSH
(FORALL (x y)
(PATS (integralGE x y))
(IFF
(EQ (integralGE x y) |@true|)
(>= x y))))

(BG_PUSH
(FORALL (x y)
(PATS (integralGT x y))
(IFF
(EQ (integralGT x y) |@true|)
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(> x y))))

(BG_PUSH
(FORALL (x y)
(PATS (integralLE x y))
(IFF
(EQ (integralLE x y) |@true|)
(<= x y))))

(BG_PUSH
(FORALL (x y)
(PATS (integralLT x y))
(IFF
(EQ (integralLT x y) |@true|)
(< x y))))

(BG_PUSH
(FORALL (x y)
(PATS (integralNE x y))
(IFF
(EQ (integralNE x y) |@true|)
(NEQ x y))))

(BG_PUSH
(FORALL (x y)
(PATS (refEQ x y))
(IFF
(EQ (refEQ x y) |@true|)
(EQ x y))))

(BG_PUSH
(FORALL (x y)
(PATS (refNE x y))
(IFF
(EQ (refNE x y) |@true|)
(NEQ x y))))

; === ESCJ 8: Section 5.3

(BG_PUSH
(FORALL (x y)
(PATS (termConditional |@true| x y))
(EQ (termConditional |@true| x y) x)))

(BG_PUSH
(FORALL (b x y)
(PATS (termConditional b x y))
(IMPLIES (NEQ b |@true|)
(EQ (termConditional b x y) y))))

; === Implementation of nonnullelements; not in ESCJ 8 (yet?):
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(DEFPRED (nonnullelements x e)
(AND (NEQ x null)

(FORALL (i)
(IMPLIES (AND (<= 0 i)

(< i (arrayLength x)))
(NEQ (select (select e x) i) null)))))

; === Axioms about classLiteral; not in ESCJ 8 (yet?):

(BG_PUSH
(FORALL (t)
(PATS (classLiteral t))
(AND (NEQ (classLiteral t) null)

(is (classLiteral t) |T_java.lang.Class|)
(isAllocated (classLiteral t) alloc))))

; === Axioms about properties of integral &, |, and /

(BG_PUSH
(FORALL (x y)
(PATS (integralAnd x y))
(IMPLIES
(OR (<= 0 x) (<= 0 y))
(<= 0 (integralAnd x y)))))

(BG_PUSH
(FORALL (x y)
(PATS (integralAnd x y))
(IMPLIES
(<= 0 x)
(<= (integralAnd x y) x))))

(BG_PUSH
(FORALL (x y)
(PATS (integralAnd x y))
(IMPLIES
(<= 0 y)
(<= (integralAnd x y) y))))

(BG_PUSH
(FORALL (x y)
(PATS (integralOr x y))
(IMPLIES
(AND (<= 0 x) (<= 0 y))
(AND (<= x (integralOr x y)) (<= y (integralOr x y))))))

(BG_PUSH
(FORALL (x y)
(PATS (integralDiv x y))
(IMPLIES
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(AND (<= 0 x) (< 0 y))
(AND (<= 0 (integralDiv x y)) (<= (integralDiv x y) x)))))

(BG_PUSH
(FORALL (x y)
(PATS (integralXor x y))
(IMPLIES
(AND (<= 0 x) (<= 0 y))
(<= 0 (integralXor x y)))))

(BG_PUSH
(FORALL (n)
(PATS (intShiftL 1 n))
(IMPLIES
(AND (<= 0 n) (< n 31))
(<= 1 (intShiftL 1 n)))))

(BG_PUSH
(FORALL (n)
(PATS (longShiftL 1 n))
(IMPLIES
(AND (<= 0 n) (< n 63))
(<= 1 (longShiftL 1 n)))))

; === Temporary kludge to speed up distinguishing small integers:

(BG_PUSH
(DISTINCT -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127 128 129
130 131 132 133 134 135 136 137 138 139
140 141 142 143 144 145 146 147 148 149
150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169
170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199
200 201 202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217 218 219
220 221 222 223 224 225 226 227 228 229
230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249
250 251 252 253 254 255 256 257 258 259
260 261 262 263 264 265 266 267 268 269
270 271 272 273 274 275 276 277 278 279
280 281 282 283 284 285 286 287 288 289
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290 291 292 293 294 295 296 297 298 299
300 301 302 303 304 305 306 307 308 309
310 311 312 313 314 315 316 317 318 319
320 321 322 323 324 325 326 327 328 329
330 331 332 333 334 335 336 337 338 339
340 341 342 343 344 345 346 347 348 349
350 351 352 353 354 355 356 357 358 359
360 361 362 363 364 365 366 367 368 369
370 371 372 373 374 375 376 377 378 379
380 381 382 383 384 385 386 387 388 389
390 391 392 393 394 395 396 397 398 399))

;----------------------------------------------------------------------
; End of Universal background predicate
;----------------------------------------------------------------------
(PROMPT_ON)

D.1.2 Additional Axioms Introduced in Calvin and Houdini

The following axioms were added to the object logic of Calvin. They have not yet been evaluated
for inclusion in ESC/Java2.

; === Axiom for maps added by Shaz
(BG_PUSH
(FORALL (f x t)
(PATS (MPAT (is f (map t)) (select f x)))
(IMPLIES (is f (map t)) (is (select f x) t))))
; === End of Shaz’s addition

; Fix suggested by Jim Saxe for the problem in DekkerLock where
; adding or removing asserts caused other asserts to break
(BG_PUSH

(FORALL (a)
(PATS (boolNot a))
(OR (EQ a |@true|) (EQ (boolNot a) |@true|))))

; end of fix

Houdini introduced no new axioms.

D.1.3 Additional Axioms Introduced in ESC/Java2

The following axioms were introduced to the unsorted object logic to reason about new constructs
introduced in ESC/Java2.

; === Define typeof for primitive types - DRCok

(BG_PUSH (FORALL (x)
(PATS (typeof x))
(IFF (is x |T_int|) (EQ (typeof x) |T_int|))))

(BG_PUSH (FORALL (x)
(PATS (typeof x))
;(PATS (is x |T_short|))
(IFF (is x |T_short|) (EQ (typeof x) |T_short|))))

(BG_PUSH (FORALL (x)
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(PATS (typeof x))
;(PATS (is x |T_long|))
(IFF (is x |T_long|) (EQ (typeof x) |T_long|))))

(BG_PUSH (FORALL (x)
(PATS (typeof x))
;(PATS (is x |T_byte|))
(IFF (is x |T_byte|) (EQ (typeof x) |T_byte|))))

(BG_PUSH (FORALL (x)
(PATS (typeof x))
;(PATS (is x |T_char|))
(IFF (is x |T_char|) (EQ (typeof x) |T_char|))))

(BG_PUSH (FORALL (x)
(PATS (typeof x))
;(PATS (is x |T_boolean|))
(IFF (is x |T_boolean|) (EQ (typeof x) |T_boolean|))))

(BG_PUSH (FORALL (x)
(PATS (typeof x))
;(PATS (is x |T_double|))
(IFF (is x |T_double|) (EQ (typeof x) |T_double|))))

(BG_PUSH (FORALL (x)
(PATS (typeof x))
;(PATS (is x |T_float|))
(IFF (is x |T_float|) (EQ (typeof x) |T_float|))))

(BG_PUSH
(FORALL (a0 b0 e s T v)
(PATS (arrayMake a0 b0 s T v))
(arrayFresh

(arrayMake a0 b0 s T v)
a0 b0 elems s T v)))

(BG_PUSH
(FORALL (a0 b0 a1 b1 s1 s2 T1 T2 v)
(PATS (MPAT (arrayMake a0 b0 s1 T1 v) (arrayMake a1 b1 s2 T2 v)))
(IMPLIES

(EQ (arrayMake a0 b0 s1 T1 v) (arrayMake a1 b1 s2 T2 v))
(AND (EQ b0 b1) (EQ T1 T2) (EQ s1 s2)))))

(BG_PUSH
(FORALL (i)
(PATS (integralMod 0 i))
(IMPLIES (NOT (EQ i 0))
(EQ (integralMod 0 i) 0))))

(BG_PUSH
(FORALL (t)
(PATS (classLiteral t))
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(EQ (classLiteral t) t)))

; === A few floating point axioms - DRCok
;; FIXME - floatingLT etc are predicates here, but are functions in
;; ESC/java - is that a problem?

;; Order axioms
(BG_PUSH
(FORALL (d dd)
(AND

(OR
(EQ |@true| (floatingLT d dd))
(EQ |@true| (floatingEQ d dd))
(EQ |@true| (floatingGT d dd)))

(IFF (EQ |@true| (floatingLE d dd))
(OR (EQ |@true| (floatingEQ d dd)) (EQ |@true| (floatingLT d dd))))

(IFF (EQ |@true| (floatingGE d dd))
(OR (EQ |@true| (floatingEQ d dd)) (EQ |@true| (floatingGT d dd))))

(IFF (EQ |@true| (floatingLT d dd)) (EQ |@true| (floatingGT dd d)))
(IFF (EQ |@true| (floatingLE d dd)) (EQ |@true| (floatingGE dd d)))
(NOT (IFF (EQ |@true| (floatingLT d dd)) (EQ |@true| (floatingGE d dd))))
(NOT (IFF (EQ |@true| (floatingGT d dd)) (EQ |@true| (floatingLE d dd)))))))

;; floatingNE
(BG_PUSH (FORALL (d dd) (IFF (EQ |@true| (floatingEQ d dd))

(NOT (EQ |@true| (floatingNE d dd))))))

;; floatADD
(BG_PUSH (FORALL (d dd)
(IMPLIES (EQ |@true| (floatingGT d (floatingNEG dd)))

(EQ |@true| (floatingGT (floatingADD d dd) |F_0.0|)))))

;; floatMUL (currently unused)
;;(BG_PUSH (FORALL (d dd) (AND
;;(IFF (OR (floatingEQ d |F_0.0|) (floatingEQ dd |F_0.0|))
;; (floatingEQ (floatingMUL d dd) |F_0.0|))
;;(IMPLIES (AND (floatingGT d |F_0.0|) (floatingGT dd |F_0.0|))
;; (floatingGT (floatingMUL d dd) |F_0.0|))
;;(IMPLIES (AND (floatingLT d |F_0.0|) (floatingLT dd |F_0.0|))
;; (floatingGT (floatingMUL d dd) |F_0.0|))
;;(IMPLIES (AND (floatingLT d |F_0.0|) (floatingGT dd |F_0.0|))
;; (floatingLT (floatingMUL d dd) |F_0.0|))
;;(IMPLIES (AND (floatingGT d |F_0.0|) (floatingLT dd |F_0.0|))
;; (floatingLT (floatingMUL d dd) |F_0.0|)))))

;; floatingMOD
(BG_PUSH
(FORALL (d dd)
(IMPLIES (EQ |@true| (floatingNE dd |F_0.0|)) (AND
(IMPLIES (EQ |@true| (floatingGE d |F_0.0|))

(EQ |@true| (floatingGE (floatingMOD d dd) |F_0.0|)))
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(IMPLIES (EQ |@true| (floatingLE d |F_0.0|))
(EQ |@true| (floatingLE (floatingMOD d dd) |F_0.0|)))))))

(BG_PUSH (FORALL (d dd)
(IMPLIES (EQ |@true| (floatingGT dd |F_0.0|)) (AND

(EQ |@true| (floatingGT (floatingMOD d dd) (floatingNEG dd)))
(EQ |@true| (floatingLT (floatingMOD d dd) dd))))))

(BG_PUSH (FORALL (d dd)
(IMPLIES (EQ |@true| (floatingLT dd |F_0.0|))

(EQ |@true| (floatingLT (floatingMOD d dd) (floatingNEG dd))))))

(BG_PUSH (FORALL (d dd)
(IMPLIES (EQ |@true| (floatingLT dd |F_0.0|))

(EQ |@true| (floatingGT (floatingMOD d dd) dd)))))

D.2 Many-Sorted Logics

This appendix section contains several different many-sorted object logics.

D.2.1 SMT-LIB Many-Sorted Logic

What follows is a sketch of the many-sorted object logic for Java, written in SMT-LIB. It is our
intention to automatically generate this logic from the PVS escjava2 logic using new functionality
we are introducing to PVS. The PVS logic escjava2 logic is the canonical representation of this
logic and is described in Section D.2.4 [PVS Realizations ESC Logics], page 54.

(theory escjava2-object-logic
:notes "SMT-LIB realization of ESC/Java2’s object logic.

by Cesare Tinelli and Joe Kiniry
Begun 24 June 2004
$Revision: 2009 $
Based upon SRC ESC/Java object logic
(design document ESCJ8a)"

:sorts ( # sort that represents *values* of Java’s boolean base type
Boolean
# sort that represents *values* of all Java’s base types
# but for Boolean
Number
# sort that represents all Java non-base types
ReferenceType
# ... represents object references
Reference
# ... represents object values
Object
# Boolean, Number, Object fields
BooleanField
NumberField
ReferenceField
# ... represents the heap
Memory )

# If we had subsorts, we would probably like to introduce the following:
# Time < Number
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# Array < Object
# Boolean, Number, Reference < JavaType

:funs ( # The heap.
(HEAP Memory)

# Top of the object hierarchy.
(java.lang.Object ReferenceType)

(0 Number)
(1 Number)

(java.lang.Long.MAX_VALUE Number)
(java.lang.Long.MIN_VALUE Number)
(java.lang.Integer.MAX_VALUE Number)
(java.lang.Integer.MIN_VALUE Number)
(java.lang.Short.MAX_VALUE Number)
(java.lang.Short.MIN_VALUE Number)
(java.lang.Byte.MAX_VALUE Number)
(java.lang.Byte.MIN_VALUE Number)
(java.lang.Char.MAX_VALUE Number)
(java.lang.Char.MIN_VALUE Number)

(java.lang.Boolean.TRUE Boolean)
(java.lang.Boolean.FALSE Boolean)

# numeric downcasting (truncation)
(narrowDouble2Float Number Number)
(narrowDouble2Long Number Number)
(narrowDouble2Int Number Number)

(narrowFloat2Long Number Number)
(narrowFloat2Int Number Number)

(narrowLong2Int Number Number)
(narrowLong2Short Number Number)
(narrowLong2Byte Number Number)
(narrowLong2Char Number Number)

(narrowInt2Short Number Number)
(narrowInt2Byte Number Number)
(narrowInt2Char Number Number)

(narrowShort2Byte Number Number)
(narrowShort2Char Number Number)

(castByte2Char Number Number)
(castChar2Byte Number Number)

#
(NULL Reference)
(+ Number Number Number)
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(- Number Number Number)
...etc...

(! Boolean Boolean)
(&& Boolean Boolean Boolean)
(|| Boolean Boolean Boolean)
...etc...

# Java ternary ?: operator
(?:Boolean Boolean Boolean Boolean)
(?:Number Boolean Number Number)
(?:Object Boolean Reference Reference)

# array type constructors
(arrayBoolean ReferenceType)
(arrayNumber ReferenceType)
(arrayReference ReferenceType ReferenceType)

# \elementtype of object array
(elementReferenceType ReferenceType ReferenceType)

# dynamic type of a reference
(typeOf Reference ReferenceType)

# Java typecast
(cast Reference ReferenceType Reference)

# TODO: perhaps rename getX and xGet

# Get/set a value from/at a specific index in an
# array of numbers.
(getNumber Object Number Number)
(setNumber Object Number Number Object)
# Get/set a value from/at a specific index in an
# array of booleans.
(getBoolean Object Number Boolean)
(setBoolean Object Number Boolean Object)
# Get/set a value from/at a specific index in an
# array of objects.
(getObject Object Number Reference)
(setObject Object Number Reference Object)

# Get/set objects in the memory (heap).
(memGet Memory Reference Object)
(memSet Memory Reference Object Memory)

# Get/set boolean fields of objects.
(boolSelect BooleanField Object Boolean)
(boolStore BooleanField Object Boolean BooleanField)
# Get/set number fields of objects.
(numberSelect NumberField Object Number)
(numberStore NumberField Object Number NumberField)



Appendix D: Logics 49

# Get/set object fields of objects.
(referenceSelect ReferenceField Object Reference)
(referenceStore ReferenceField Object Reference ReferenceField)

# Allocation time of a reference.
(vAllocTime Reference Number :injective)

# Closure of allocation over objects and arrays.
(fClosedTime ReferenceField Number)
(eClosedTime Memory Number)

# Array length as a first-order construct.
(arrayLength Reference Number)
)

:preds ( # Java type predicates on numbers
(isChar Number)
(isByte Number)
(isShort Number)
(isInt Number)
(isLong Number)
(isFloat Number)
(isDouble Number)

# type predicate for mathematical integers
(isZ Number)

# Java class and interface inheritance ("extends" and
# "implements", but only smallest "implements" of a class,
# not inherited implements)
(extends ReferenceType ReferenceType)
# Java subtyping
(<: ReferenceType ReferenceType :reflex :trans)

# Cesare says these are built-in, since they are
# not easily axiomatized.
(< Number Number)
(<= Number Number)
...etc...

# is-a predicate. Corresponds to the static type of a
# Java reference.
(isa Reference ReferenceType)

# abstract classes and interfaces are not instantiable
# in Java
(instantiable ReferenceType)

# Is the referenced object allocated at the specified time?
(isAllocated Reference Number)

# Allocation of array elements.



Appendix D: Logics 50

(arrayFresh Reference Memory Number )
)

:extensions ()

:definition "Unlike the logic in ESCJ8a, this is a many-sorted logic.
Additionally, this is a prover-independent logic. We only
assume that the prover provides:
o a theory of rational arithemetic
o a theory of arrays
o a theory of uninterpreted function symbols on which
equality is defined"

:axioms ( # extends is antireflexive
(forall ?x ReferenceType (not (extends ?x ?x)) )
# subtype includes extends
(forall ?x ReferenceType

(forall ?y ReferenceType
(implies (extends ?x ?y) (<: ?x ?y))))

# subtype transitivity
(forall ?x ReferenceType

(forall ?y ReferenceType
(forall ?z ReferenceType

(implies (and (<: ?x ?y)
(<: ?y ?z))

(<: ?x ?z)))))
# subtype reflexivity
(forall ?x ReferenceType (<: ?x ?x))
# subtype is the smallest relation that contains extends
(forall ?x ReferenceType

(forall ?y ReferenceType
(implies (and (<: ?x ?y)

(not (= ?x ?y)))
(exists ?z ReferenceType

(and (extends ?x ?z)
(<: ?z ?y))))))

# <: is anti-symmetric
(forall ?x ReferenceType

(forall ?y ReferenceType
(implies (and (<: ?x ?y) (<: ?y ?x))

(= (?x ?y)))))

# java.lang.Object is top of subtype hierarchy
(forall ?x ReferenceType (<: ?x java.lang.Object))

# subtype rules for arrays
(forall ?x ReferenceType

(forall ?y ReferenceType
(implies (<: ?x ?y)

(<: (array ?x) (array ?y)))))
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# left inverses of Object constructors
(forall ?x ReferenceType

(= (elementReferenceType (arrayObject ?x))
?x))

# integral type boundaries
(= minByte -128)
(= maxByte 127)
(forall ?x Number

(iff (isByte ?x) (and (<= minByte ?x)
(<= ?x maxByte))))

...

# define an approximation of Z
(isZ 0)
(isZ 1)
(forall ?x Number
(iff (isZ ?x) (isZ (+ ?x 1))))

(forall ?x Number
(implies (isZ ?x)
(forall ?y Number
(implies (and (< ?x ?y)

(< ?y (+ ?x 1)))
(not (isZ ?y))))))

# all Object Reference are NULL or have a unique
# dynamic subtype
(forall ?x Reference
(forall ?t ReferenceType
(iff (isa ?x ?t)

(or (= ?x NULL)
(typeOf ?x ?t)))))

# definition of cast
(forall ?x Reference
(forall ?t ReferenceType
(isa (cast ?x ?t) ?t)))

# upcasting a value does not change it
(forall ?x Reference
(forall ?t ReferenceType
(implies (isa ?x ?t)

(= (cast ?x ?t) ?x))))

# TRUE and FALSE are distinct values
(distinct TRUE FALSE)

# TRUE and FALSE are the only Boolean values
(forall ?x Boolean (or (= ?x TRUE)

(= ?x FALSE)))
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# definition of Boolean operators
...

# definition of instantiable type
(instantiable arrayBoolean)
(instantiable arrayNumber)
(instantiable java.lang.Object)
(forall ?x Reference (instantiable (typeOf ?x)))
(forall ?x ReferenceType (iff (instantiable ?x)

(instantiable (arrayObject ?x))))

# to be checked / modified by clement
(forall ?x ReferenceType
(forall ?y ReferenceType
(implies (and (subtype ?x ?y)

(instantiable ?y))
(instantiable ?x))))

# for simplicity, get* and set* functions are defined
# on all Object values, whether they are arrays or not

(forall ?a object
(for all ?i Number
(forall ?x Number

(= (getNumber (setNumber ?a ?i ?x) ?i)
?x))))

(forall ?a Object
(for all ?i Number
(for all ?j Number
(forall ?x Number
(or (= ?i ?j)

(= (getNumber (setNumber ?a ?i ?x) ?j)
(getNumber ?a ?j)))))))

(forall ?a object
(for all ?i Number
(forall ?x Boolean
(= (getBoolean (setBoolean ?a ?i ?x) ?i)

?x))))
(forall ?a Object
(for all ?i Number
(for all ?j Number
(forall ?x Boolean
(or (= ?i ?j)

(= (getBoolean (setBoolean ?a ?i ?x) ?j)
(getBoolean ?a ?j)))))))

(forall ?a object
(for all ?i Number
(forall ?x Reference
(= (getObject (setObject ?a ?i ?x) ?i)



Appendix D: Logics 53

?x))))
(forall ?a Object
(for all ?i Number
(for all ?j Number
(forall ?x Reference
(or (= ?i ?j)

(= (getObject (setObject ?a ?i ?x) ?j)
(getObject ?a ?j)))))))

(forall ?m Memory
(for all ?o Reference
(forall ?x object
(= (memGet (memSet ?m ?o ?x) ?o)

?x))))
(forall ?m Memory
(for all ?o1 Reference
(for all ?o2 Reference
(forall ?x object
(or (= ?o1 ?o2)

(= (memGet (memSet ?m ?o1 ?x) ?o2)
(memGet ?m ?o2)))))))

# axioms for select
...

# axioms for vAllocTime
# injectivity axiom of vAllocTime
(forall ?r1 Reference

(forall ?r2 Reference
(implies (= (vAllocTime ?r1) (vAllocTime ?r2))

(= ?r1 ?r2))))

# definition of isAllocated in terms of vAllocTime
(forall ?r Reference
(forall ?t Number
(iff (isAllocated ?r ?t) (< (vAllocTime ?r ?t) ?t))))

# definition of fClosedTime. Intuitively, what we are
# representing is that, if an object is allocated, then
# all of its fields are allocated.
(forall ?h Memory
(forall ?r Reference

(forall ?f ReferenceField
(forall ?t Number
(implies (and (< (fClosedTime ?f) ?t)

(isAllocated ?r ?t))
(isAllocated (referenceSelect ?f

(memGet ?h ?r)) ?t))))))

# and the same axiom applies to arrays and their values
(forall ?h Memory
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(forall ?r Reference
(forall ?i Number

(forall ?t Number
(implies (and (< (eClosedTime ?h) ?t)

(isAllocated ?r ?t))
(isAllocated (getObject

(memGet ?h ?r) ?i) ?t))))))

# length of arrays
(forall ?r Reference

(let (length (arrayLength ?r))
(and (<= 0 length)

(isZ length))))

)

end)

D.2.2 Many-Sorted Logic with Subsorts

We have not yet written the many-sorted logic with subsorts.

D.2.3 Maude Realization of Many-Sorted Logics

We have not yet written the Maude realisation of any of these logics.

D.2.4 PVS Realizations ESC Logics

The original unsorted Simplify-based logic described in Chapter 2 [Unsorted Logic], page 3 has
been translated into a single-typed first-order logic in PVS. We call this logic the ESC/Java logic,
or equivalently, in PVS, the escjava logic theory.

The intent of this translation is threefold:

1. The PVS specification provides a familiar realisation of the logic to readers who are unfamiliar
with the Simplify theorem prover and its idiosyncrasies.

2. This logic provides a foundation for writing the “lifted”, typed version of the logic (called the
ESC/Java2 logic) that is described in 〈undefined〉 [Sorted Logic], page 〈undefined〉.

3. Finally, within PVS we hope to formally reason about metatheoretical properties of each of
these logics. In particular, we are interested in showing that each logic is sound.

The escjava logic theory is decomposed into several theories, each of which documents a different
set of related axioms, mirroring the structure of the preceeding discussions. The following section
documents this logic.

D.3 The PVS Logic escjava logic

D.3.1 The Theory escjava types

The original Simplify logic, as documented in Chapter 2 [Unsorted Logic], page 3, is unsorted. An
unsorted logic is equivalent to a sorted logic with a unique sort S where each term has sort S. The
sole purpose of the theory escjava types is the declaration of this single sort S.

escjava_types : THEORY
BEGIN
S : TYPE+

END escjava_types
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The keyword TYPE+ indicates that the type S is a non-empty type; that is to say, the type S has
at least one representative, or, alternatively, there exists at least one entity of type S.

D.3.2 The Theory escjava simplify

We encode Simplify’s built-in array theory and document its forumlas in the PVS theory esc-
java simplify in the following fashion1.

escjava_simplify : THEORY
BEGIN
IMPORTING escjava_types,

list[S]

% The below comments are from the paper
% Simplify: A Theorem Prover for Program Checking, Online Appendix

% See the file "../simplify/simplify_benchmarks/format.txt" for
% more details.

% Simplify has exactly the following formulas:
% (FORALL (id 1 . . . id n) (PATS . . . ) F)
% (EXISTS (id 1 . . . id n) (PATS . . . ) F)
% AND OR NOT IMPLIES IFF EXPLIES

% Since PVS does not have EXPLIES we define it here.
EXPLIES(a, b : bool) : bool = b IMPLIES a

% Simplify also has several built-in relations.
% EQ NEQ < <= > >= DISTINCT

% DISTINCT is not built-in in PVS, and since it defines a (set of)
% axioms, we cannot define it inductively inside of PVS.

% Forumlas of the form
% (LBLPOS L F)
% (LBLNEG L F)
% (LBL L F)
% where L is an identifier and F is a formula are logically
% equivalent to F.

% If F and G are binary quasi-relations (description follows),
% then the formula
% (ORDER F G)
% asserts that F and G are the irreflexive and reflexive versions
% of some partial order, respectively.

% === ESCJ 8: Section 0.4
% +++ Escjava2-Logics.texinfo @node Maps

select : [ S, S -> S ]
store : [ S, S, S -> S ]

1 Note that we annotate in a given PVS theory the location of the definitions contained therein, both in the original
SRC ESC/Java design documentation, in this ESC/Java2-centric document, and in the JACM Simplify paper.
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select_store1 : AXIOM
FORALL (m, i, x : S): select (store (m, i, x), i) = x

select_store2 : AXIOM
FORALL (m, i, j, x : S): i /= j IMPLIES

select(store(m, i, x), j) = select(m, j)

% If an identifier that is not predefined is used as a term, it
% denotes an arbitrary value. If an identifier that is not
% predefined is used as a formula, then it denotes a unknown
% Boolean value. If an identifier that is not predefined is usen
% as a function symbol in a term, it denotes an uninterpreted
% function. There is no way for a user to introduce new relation
% symbols, but the directives DEFPRED and DEFPREDMAP, described in
% the following, offer a similar capability.

END escjava_simplify

This theory defines two functions, select and store, whose signatures and axiomatic definitions ex-
actly match those described in the Simplify technical reportSimplify-HPL-2003-148 and the Sim-
plify JACM paperDetlefsNelsonSaxe2005. The basic use of these functions are described earlier in
this document in Section 2.1.5 [Maps], page 6.

D.3.3 A Partial Semantics of Java

The theory escjava java semantics defines a partial semantics for Java.
escjava_java_semantics : THEORY
BEGIN
IMPORTING escjava_java_typesystem,

escjava_java_boolean_ops,
escjava_java_integral_types,
escjava_java_integral_ops,
escjava_java_floating_point,
escjava_java_field_representation,
escjava_java_strings,
escjava_java_arrays,
escjava_java_lock_semantics

END escjava_java_semantics

As seen above, this semantics is decomposed into several related pieces, each of which can be
extended independently. We describe each theory upon which escjava java semantics is based in
the following sections.

D.3.4 The Java Typesystem

The theory escjava java typesystem encodes portions of the Java 1.4 typesystem, as described in
Section 2.2 [Types and Subtypes], page 7.

escjava_java_typesystem : THEORY
BEGIN
IMPORTING escjava_simplify,

orders[S]

% === ESCJ 8: Section 1.1
% +++ Escjava2-Logics.texinfo @node Types and Subtypes

% We will use ’<=’ in PVS for ’<:’ in the Simplify logic. Thus,
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% <= is reflexive, transitive, and antisymmetric.
<= : ({R : PRED[[S, S]] |

reflexive?(R) AND transitive?(R) AND antisymmetric?(R)})

% Primitive type definitions.

T_boolean, T_char, T_byte, T_short, T_int, T_long, T_float, T_double : S

primitive?(c : S): bool = (c = T_boolean) OR
(c = T_char) OR
(c = T_byte) OR
(c = T_short) OR
(c = T_int) OR
(c = T_long) OR
(c = T_float) OR
(c = T_double)

primitive_types_are_final : AXIOM
FORALL (c, p : S): c <= p AND primitive?(p) IMPLIES c = p

primitive_types_have_no_proper_supertypes : AXIOM
FORALL (c, p : S): c <= p AND primitive?(c) IMPLIES p = c

% The base type in Java (java.lang.Object).
T_java_lang_Object : S

java_lang_Object_is_Top : AXIOM
FORALL (c : S): NOT primitive?(c) IMPLIES c <= T_java_lang_Object

% This could be expressed also using upper_bound?

% === ESCJ 8: Section 1.2

% Another employment of the ’as’ trick, faking types/sorts on an
% untyped/unsorted logic.
% ’as’ trick in use.
asChild : [S, S -> S]
% If t0 is a proper subclass of t2, then classDown(t2, t0) is
% the direct subclass of t2 that is a superclass of t0.
classDown : [S, S -> S]

classDown_definition : AXIOM
FORALL (t0, t1, t2 : S): t0 <= asChild(t1, t2) IMPLIES

classDown(t2, t0) = asChild(t1, t2)

% === ESCJ 8: Section 1.3

T_java_lang_Cloneable : S

elemtype : [S -> S]
array_constructor : [S -> S]

arrays_are_cloneable : AXIOM
FORALL (t : S): array_constructor(t) <= T_java_lang_Cloneable
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elemtype_definition : AXIOM
FORALL (t : S): elemtype(array_constructor(t)) = t

array_subtyping : AXIOM
FORALL (t0, t1 : S): t0 <= array_constructor(t1) IFF

(t0 = array_constructor(elemtype(t0)) AND
elemtype(t0) <= t1)

% === ESCJ 8: Section 2.1

is : [ S, S -> bool ]
cast : [ S, S -> S ]

redundant_cast_removal : AXIOM
FORALL (x, t : S): is(x, t) IMPLIES cast(x, t) = x

% === ESCJ 8: Section 2.2

bool_false, bool_true : S

java_false_and_true_are_distinct : AXIOM
bool_false /= bool_true;

java_null : S

Javas_boolTrue_differs_from_Javas_boolFalse : AXIOM
bool_false /= bool_true

% Not in ESCJ8, but should be
refEQ, refNE : [ S, S -> S ]

refEQ : AXIOM
FORALL (x, y : S): refEQ(x, y) = bool_true IFF x = y

refNE : AXIOM
FORALL (x, y : S): refNE(x, y) = bool_true IFF x /= y

END escjava_java_typesystem

This theory depends upon the PVS builtin theory orders. orders defines the usual ordering relations
as predicate variables <= and <. By instantiating these variables as predicated formulas we can
easily define Java’s subtype relation, as described in Section 2.2 [Types and Subtypes], page 7.

Recall that these PVS specifications are meant to be the canonical semantics and are translated
into various first-order semantics for other theorem provers. Since most, if not all, first-order
theorem provers have builtin orders, translating this (textually) efficient (but somewhat opaque)
PVS definition into the corresponding prover-dependent definition is straightforward: it is typically
realised as a simple textual replacement (e.g., <= for <: in the case of Simplify).

We first define Java’s primitive types, as well as a helper primitive? predicate function. Note that
we follow the standard PVS (and Lisp) convention of naming predicate functions with a trailing
question mark.

The subtyping axioms for primitive types are next introduced: primitive types cannot have sub-
types, nor do they have supertypes—they are independent types that have nothing to do with
reference/object types.
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We next define the base type of all Java classes, java.lang.Object. Because we cannot use periods
in PVS identifiers, we use underscores instead, thus T java lang Object. The prefix T hints that
the constant is a Java type. We state a single axiom about T java lang Object: it is the top of
the type hierarchy for all non-primitive types.

D.3.5 The Java Boolean Operations

The Theory escjava java boolean ops

escjava_java_boolean_ops : THEORY
BEGIN
IMPORTING escjava_java_typesystem

% === ESCJ 8: Section 5.2

boolAnd (a, b : S): bool = a = bool_true AND b = bool_true
boolEq (a, b : S): bool = a = bool_true IFF b = bool_true
boolImplies (a, b : S): bool = a = bool_true IMPLIES b = bool_true
boolNE (a, b : S): bool = NOT (a = bool_true IFF b = bool_true)
boolNot (a : S): bool = NOT (a = bool_true)
boolOr (a, b : S): bool = a = bool_true OR b = bool_true

% Added to make the translation of the pretty-printer easier.

% S_to_bool(a : S) : bool =
% if(a = bool_true)
% then true
% else false
% endif

bool_to_S(a : bool) : S =
if(a)
then bool_true
else bool_false

endif

% CONVERSION+ S_to_bool
CONVERSION+ bool_to_S

% === ESCJ 8: Section 5.3

% Java’s ternary ’conditional’ operator (? :)

termConditional (b, x, y : S): S = IF b = bool_true
THEN x
ELSE y

ENDIF

termConditional_elimination : LEMMA
FORALL (x, y : S): termConditional(bool_true, x, y) = x

termConditional_falsehood : LEMMA
FORALL (b, x, y : S): b /= bool_true IMPLIES

termConditional(b, x, y) = y
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END escjava_java_boolean_ops

D.3.6 The Java Integral Types

The Theory escjava java integral types

escjava_java_integral_types : THEORY
BEGIN
IMPORTING escjava_java_typesystem

% === ESCJ 8: Section 2.2.1

% Axioms to express the size of the basic types.
S_to_real : [ S -> real ]
CONVERSION+ S_to_real

% Additional axiom for the translation
real_to_S : [ real -> S ]
CONVERSION+ real_to_S

intFirst, intLast, longFirst, longLast : real

range_of_char : AXIOM
FORALL (x : S): is(x, T_char) IFF 0 <= x AND x <= 65535

range_of_byte : AXIOM
FORALL (x : S): is(x, T_byte) IFF -128 <= x AND x <= 127

range_of_short : AXIOM
FORALL (x : S): is(x, T_short) IFF -32768 <= x AND x <= 32767

range_of_int : AXIOM
FORALL (x : S): is(x, T_int) IFF intFirst <= x AND x <= intLast

range_of_long : AXIOM
FORALL (x : S): is(x, T_long) IFF longFirst <= x AND x <= longLast

intFirst_definition : AXIOM
longFirst < intFirst AND intFirst < -1000000 AND 1000000 < intLast AND intLast < longLast

END escjava_java_integral_types

D.3.7 The Java Floating Point Types

The Theory escjava java floating point

escjava_java_floating_point : THEORY
BEGIN
IMPORTING escjava_java_typesystem

% === A few floating point axioms - DRCok

floatingEQ, floatingGE, floatingGT, floatingLE, floatingLT, floatingNE : [ S, S -> S ]
floatingADD, floatingMUL, floatingMOD : [ S, S -> S ]
floatingNEG : [ S -> S ]

order_axiom : AXIOM
FORALL (d, dd : S):
(floatingLT(d, dd) = bool_true OR
floatingEQ(d, dd) = bool_true OR
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floatingGT(d, dd) = bool_true) AND
floatingLE(d, dd) = bool_true IFF floatingEQ(d, dd) = bool_true OR floatingLT(d, dd) = bool_true AND
floatingGE(d, dd) = bool_true IFF floatingEQ(d, dd) = bool_true OR floatingGT(d, dd) = bool_true AND
floatingLT(d, dd) = bool_true IFF floatingGT(dd, d) = bool_true AND
floatingLE(d, dd) = bool_true IFF floatingGE(dd, d) = bool_true AND
NOT (floatingLT(d, dd) = bool_true IFF floatingGE(d, dd) = bool_true) AND
NOT (floatingGT(d, dd) = bool_true IFF floatingLE(d, dd) = bool_true)

floatingNE_definition : AXIOM
FORALL (d, dd : S): floatingEQ(d, dd) = bool_true IFF NOT floatingNE(d, dd) = bool_true

F_0_0 : S

floatingADD_definition : AXIOM
FORALL (d, dd : S): (floatingGT(d, floatingNEG(dd)) = bool_true) IMPLIES

floatingGT(floatingADD(d, dd), F_0_0) = bool_true

% currently commented out/incomplete in ESC/Java unsorted logic
% floatingMUL_definition : AXIOM
% FORALL (d, dd : S): ...

floatingMOD_definition1 : AXIOM
FORALL (d, dd : S): (floatingNE(d, F_0_0) = bool_true) IMPLIES

(floatingGE(d, F_0_0) = bool_true AND
floatingGE(floatingMOD(d, dd), F_0_0) = bool_true AND
floatingLE(d, F_0_0) = bool_true AND
floatingLE(floatingMOD(d, dd), F_0_0) = bool_true)

floatingMOD_definition2 : AXIOM
FORALL (d, dd : S): (floatingGT(d, F_0_0) = bool_true) IMPLIES

(floatingGT(floatingMOD(d, dd), floatingNEG(dd)) = bool_true AND
floatingLT(floatingMOD(d, dd), dd) = bool_true)

floatingMOD_definition3 : AXIOM
FORALL (d, dd : S): (floatingLT(dd, F_0_0) = bool_true) IMPLIES

floatingLT(floatingMOD(d, dd), floatingNEG(dd)) = bool_true
floatingMOD_definition4 : AXIOM
FORALL (d, dd : S): (floatingLT(dd, F_0_0) = bool_true) IMPLIES

floatingGT(floatingMOD(d, dd), dd) = bool_true

END escjava_java_floating_point

D.3.8 Representations for Java Fields

The Theory escjava java field representation

escjava_java_field_representation : THEORY
BEGIN
IMPORTING escjava_java_typesystem,

escjava_jml_semantics

S_to_real : [ S -> real ]
CONVERSION+ S_to_real

% === ESCJ 8: Section 2.4
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% ’as’ trick in use.
asField : [ S, S -> S ]
asField_definition : AXIOM
FORALL (f, t, x : S): is(select(asField(f, t), x), t)

% === ESCJ 8: Section 2.5

% ’as’ trick in use.
asElems : [ S -> S ]
asElems_definition : AXIOM
FORALL (e, a, i : S): is(select(select(asElems(e), a), i),

elemtype(typeof(a)))

% === ESCJ 8: Section 3.0

vAllocTime : [ S -> S ]
isAllocated (x, a0 : S): bool = vAllocTime(x) < a0

% === ESCJ 8: Section 3.1

fClosedTime : [ S -> S ]
fClosedTime_definition : AXIOM
FORALL (x, f, a0 : S):
(fClosedTime(f) < a0 AND isAllocated(x, a0)) IMPLIES
isAllocated(select(f, x), a0)

% === ESCJ 8: Section 3.2

eClosedTime : [ S -> S ]
eClosedTime_definition : AXIOM
FORALL (a, e, i, a0 : S):
(eClosedTime(e) < a0 AND isAllocated(a, a0)) IMPLIES
isAllocated(select(select(e, a), i), a0)

% === Axioms about classLiteral; not in ESCJ 8 (yet?):

classLiteral : [ S -> S ]
T_java_lang_Class : S
% TODO: review use of alloc
alloc : S

classLiteral_definition1 : AXIOM
FORALL (t : S): classLiteral(t) /= java_null AND

is(classLiteral(t), T_java_lang_Class) AND
isAllocated(classLiteral(t), alloc)

classLiteral_definition2 : AXIOM
FORALL (t : S): classLiteral(t) = t

END escjava_java_field_representation
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D.3.9 Java Strings

The Theory escjava java strings

escjava_java_strings : THEORY
BEGIN
IMPORTING escjava_java_typesystem,

escjava_jml_semantics

T_java_lang_String : S
stringCat (x, y : S): S

stringCat_definition1 : AXIOM
FORALL (x, y : S): stringCat(x, y) /= java_null AND

typeof(stringCat(x, y)) <= T_java_lang_String

END escjava_java_strings

D.3.10 Java Arrays

The Theory escjava java arrays

escjava_java_arrays : THEORY
BEGIN
IMPORTING escjava_java_typesystem,

escjava_java_field_representation,
escjava_java_integral_types

% === ESCJ 8: Section 5.0

arrayLength : [ S -> S ]
arrayLength_definition : AXIOM
FORALL (a : S): 0 <= arrayLength(a) AND

is(arrayLength(a), T_int)

% elems will be eliminated in the new logic, at a cost of
% complexity in the translator of course, and instead separate
% maps will be introduced for each array. This will make the
% logic cleaner and possibly help the prover be more efficient.
elems : S
arrayFresh : [ S, S, S, S, S, S, S -> bool ]
arrayMake : [ S, S, S, S, S -> S ]
arrayShapeOne : [ S -> S ]
arrayShapeMore : [ S, S -> S ]
arrayParent : [ S -> S ]
arrayPosition : [ S -> S ]

array_axiom1 : AXIOM
FORALL (a, a0, b0, e, n, s, T, v : S):
arrayFresh(a, a0, b0, e, arrayShapeMore(n, s), T, v) IFF
(a0 <= vAllocTime(a) AND
isAllocated(a, b0) AND
a /= java_null AND
typeof(a) = T AND
arrayLength(a) = n AND
FORALL (i : S):
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arrayFresh(select(select(e, a), i), a0, b0, e, s, elemtype(T), v) AND
arrayParent(select(select(e, a), i)) = a AND
arrayPosition(select(select(e, a), i)) = i)

array_axiom2 : AXIOM
FORALL (a, a0, b0, e, n, T, v : S):
arrayFresh(a, a0, b0, e, arrayShapeOne(n), T, v) IFF
(a0 <= vAllocTime(a) AND
isAllocated(a, b0) AND
a /= java_null AND
typeof(a) = T AND
arrayLength(a) = n AND
FORALL (i : S):
select(select(e, a), i) = v)

array_axiom3 : AXIOM
FORALL (a0, b0, e, s, T, v : S):
arrayFresh(arrayMake(a0, b0, s, T, v), a0, b0, elems, s, T, v)

array_axiom4: AXIOM
FORALL (a0, b0, a1, b1, s1, s2, T1, T2, v : S):
(arrayMake(a0, b0, s1, T1, v) = arrayMake(a1, b1, s2, T2, v)) IMPLIES
(b0 = b1 AND T1 = T2 AND s1 = s2)

% === code to ensure that (isNewArray x) ==> x has no invariants

% arrayType represents the type from which all Java arrays inherit.
arrayType : S

% arrayType is distinct from all types with invariants (due to the
% generated type-distinctness axiom)
arrayType_distinct : AXIOM
arrayType = asChild(arrayType, T_java_lang_Object)

isNewArray : [ S -> S ]

arrayType_definition : AXIOM
FORALL (t : S): array_constructor(t) <= arrayType

arrayType_is_top : AXIOM
FORALL (s : S):
(bool_true = isNewArray(s)) IMPLIES
typeof(s) <= arrayType

% === Implementation of nonnullelements; not in ESCJ 8 (yet?):

nonnullelements (x, e : S): bool =
x /= java_null AND
FORALL (i : S):
(0 <= i AND i < arrayLength(x)) IMPLIES
select(select(e, x), i) /= java_null

END escjava_java_arrays
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D.3.11 Java Concurrency Primitives

The Theory escjava java lock semantics

escjava_java_lock_semantics : THEORY
BEGIN
IMPORTING escjava_java_typesystem,

escjava_java_field_representation,
escjava_java_integral_ops

LS : S

% === ESCJ 8: Section 4

% ’as’ trick in use.
asLockSet : [ S -> S ]
max : [ S -> S ]
max_of_a_lockset_is_a_lockset : AXIOM
FORALL (s : S): select(asLockSet(s), max(asLockSet(s))) = bool_true

% null is in lockset (not in ESCJ 8)
null_is_in_lockset : AXIOM
FORALL (s : S): select(asLockSet(s), java_null) = bool_true

% lockLE (x, y : S): bool = x <= y
% lockLT (x, y : S): bool = x < y

lockLE (x, y : S): S = integralLE(x, y)
lockLT (x, y : S): S = integralLT(x, y)

% all locks in lockset are below max(lockset) (not in ESCJ 8)
all_locks_in_lockset_are_below_max_lockset : AXIOM
FORALL (s, mu : S): select(asLockSet(s), mu) = bool_true IMPLIES

lockLE(mu, max(asLockSet(s))) = bool_true

% null precedes all objects in locking order (not in ESCJ 8)
null_precedes_all_objects : AXIOM
FORALL (x : S): typeof(x) <= T_java_lang_Object IMPLIES

lockLE(java_null, x) = bool_true

END escjava_java_lock_semantics

D.3.12 A Partial Semantics of JML

D.3.13 The Java

The Theory escjava java

escjava_jml_semantics : THEORY
BEGIN
IMPORTING escjava_java_typesystem

% === Define typeof for primitive types - DRCok
typeof : [ S -> S ]

typeof_char : AXIOM
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FORALL (x : S): is(x, T_char) IFF typeof(x) = T_char
typeof_byte : AXIOM
FORALL (x : S): is(x, T_byte) IFF typeof(x) = T_byte

typeof_short : AXIOM
FORALL (x : S): is(x, T_short) IFF typeof(x) = T_short

typeof_int : AXIOM
FORALL (x : S): is(x, T_int) IFF typeof(x) = T_int

typeof_long : AXIOM
FORALL (x : S): is(x, T_long) IFF typeof(x) = T_long

typeof_float : AXIOM
FORALL (x : S): is(x, T_float) IFF typeof(x) = T_float

typeof_double : AXIOM
FORALL (x : S): is(x, T_double) IFF typeof(x) = T_double

% === ESCJ 8: Section 2.3

typeof_reference_definition : AXIOM
FORALL (x, t : S): t <= T_java_lang_Object IMPLIES

x = t IFF (x = java_null OR typeof(x) <= t)

END escjava_jml_semantics

D.3.14 The Unified Logic

D.3.15 The Java

The Theory escjava java

% The ESC/Java2 unsorted logic.
%
% This is the unsorted logic used by ESC/Java2.
%
% $Id: escjava_logic.pvs 1685 2005-10-24 09:06:51Z jkiniry $
%
% Copyright (C) 2005 Joe Kiniry, Cesare Tinelli, Patrice Chalin, and
% Clement Hurlin
%
% This is the canonical unsorted logic which is meant to be
% semantically equivalent to the original Simplify logic but usable
% for basic program verification in PVS.

escjava_logic : THEORY
BEGIN
IMPORTING escjava_simplify,

escjava_java_semantics,
escjava_jml_semantics

END escjava_logic
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Appendix E Copying

Portions of “The Logics and Calculi of ESC/Java2” is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.0 license. See
http://creativecommons.org/licenses/by-nc-sa/2.0/

Copyright c© 1997 K. Rustan Leino, Jim Saxe, and Digital Equipment Corporation.
Copyright c© 1998 Cormac Flanagan and Digital Equipment Corporation.
Copyright c© 1999 K. Rustan Leino and Digital Equipment Corporation.
Copyright c© 2004 Joseph R. Kiniry and Radboud University Nijmegen.
Copyright c© 2004,2005 Joseph R. Kiniry and University College Dublin.

You are free:
• to copy, distribute, display, and perform the work
• to make derivative works

Under the following conditions:
• Attribution. You must give the original author credit.
• Noncommercial. You may not use this work for commercial purposes.
• Share Alike. If you alter, transform, or build upon this work, you may distribute

the resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this
work.
Any of these conditions can be waived if you get permission from the author.
Your fair use and other rights are in no way affected by the above.
This is a human-readable summary of the Legal Code.
See http://creativecommons.org/licenses/by-nc-sa/2.0/legalcode
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