
Introducing OBJ3’s New Features

Timothy Winkler∗

August 22, 2001

Abstract: Some new features have been added to OBJ3 (as of the 2.0 release). The
syntax and usage of these new features are briefly described in this document.

1 Introduction

This is a brief introduction to some of the newer features of OBJ3 added since Release 1.0. This
introduction is written assuming that you have access to Introducing OBJ3 by Goguen and Win-
kler [1]. Two major goals of the new features are (a) easy extension of modules and (b) the controlled
application of rules. This last allows the use of OBJ3 as a basis for very flexible equational reasoning.

Descriptions of syntax here use the conventions of the Introducing OBJ3 report. See also the
beginning of the Syntax section, 3, where they are summarized.

2 Descriptions

The following sections give brief discussions of the syntax and usage of the new features. The syntax
is also more formally presented in section 3.

2.1 Verbose mode

The option verbose controls how verbose various kinds of output will be. In verbose mode, detailed
information will be given on sorts and the handling of automatically created id (identity) rules and
conditions.

2.2 Treatment of Theories

Theories are now treated in nearly the same fashion as objects. It is possible to do reductions in a
theory, though warnings will be issued for reductions using terms with free variables. See Section 2.23
for more information. The main remaining difference between objects and theories is that built-in
equations are not allowed in theories. For more information on built-ins, see [2].

2.3 Including

There is a new mode of module incorporation called including.

including 〈ModExp 〉 .
inc 〈ModExp 〉 .

The second form is an abbreviated version of the first. Including is like using in that no preservation
of the structure of the included module is implied. On the other hand, in the implementation it is
treated as incorporation without copying and so is similar to protecting. If a module is included
twice in a given context, only one version of it is created and all references are all to the same shared
instance.
∗This documented was edited for clarity by Joseph Kiniry to be included with the 2.06 release of OBJ3 (June,

2000). Any errors herein are his alone. Please provide feedback to obj3-feedback@kindsoftware.com.

1

2.4 Principal Sort

The sort that should be the principal sort of a module can be explicitly specified by

principal-sort 〈Sort 〉 .
psort 〈Sort 〉 .

The second form is an abbreviated version of the first. Note that this doesn’t create a sort, it
just specifies that an existing sort should be taken as the principal sort of the module being defined.
Usually this is not needed, as the default choice of principal sort is correct. This operator is typically
necessary if the principal sort is to come from a parameter theory. Recall that the notion of a principal
sort plays an important role in default view computations, i.e. in abbreviated parameterized module
instantiation a la make.

2.5 Vars-of and Show Vars

A new way of introducing variables into a module has been defined. You can now ask that new
copies of all the variables of another object be introduced into the current object. These variables
will maintain their name and sort.

vars-of [〈ModExp 〉] .

Note: the set of variables considered to be in a module is not necessary cumulative. In particular,
it may be somewhat smaller that you would expect.

Often it is the case that the module that introduces a sort also establishes a convention for
naming variables of that sort, as well as introducing several variables of that sort. This new feature
makes it easy to maintain the convention and reuse the variable names. This feature can also be
used to make the variables of a re-opened module available for use (see later discussion). As usual,
if the 〈ModExp〉 is omitted, the last module is used, but this is only really useful for such a re-opened
module.

The variables of a module can be seen by using the command

show vars [〈ModExp 〉] .

2.6 Let

A shorthand notation for defining a name for a term has been introduced.

let 〈Sym 〉 = 〈Term 〉 .
let 〈Sym 〉 : 〈Sort 〉 = 〈Term 〉 .

The name used is restricted to be a single simple symbol (such as “x”, “@2”, or “ThePoint”). The
second form above is equivalent to

op 〈Sym 〉 : -> 〈Sort 〉 .
eq 〈Sym 〉 = 〈Term 〉 .

In the first form, the sort of the operator is taken to be the sort of the term as discovered by parsing.
When the defined symbol is used in expressions, it will be replaced by its definition, and so the
symbol essentially stands for the value of the term. Note that, a consequence of this form is that
each time the symbol is used, the term will be reduced once again.

There is a special case of let

let 〈Sym 〉 [: 〈Sort 〉] = .

This introduces a name for the current term which is last reduction result or the current state of
the last start-ed term. See Section 2.25 for more information on start.

2

2.7 Show Principal Sort

The commands

show principal-sort [〈ModExp 〉] .

and

show psort [〈ModExp 〉] .

will display the principal sort of a given module, or the current module if none is specified.

2.8 Comments

If the first non-blank character after “***” is a ‘(’, then the comment extends from that character
up to the next balancing ‘)’. This block-comment form make it easy to comment out many lines at
once. It is possible that comments written for the old convention may now get the wrong treatment.
Examples of comments of this form are

*** (
eq X * 0 = 0 .

)
*** (This is an interesting equation:) eq X + X = X .

Note that the comment in the second case only extends over only part of a line. The equation is not
part of the comment. This case in particular might cause trouble for existing comments. Standard
style comments can be nested inside of multi-line comments, as long as a “***)” doesn’t accidentally
appear within a line.1

2.9 The Last Module

The module name THE-LAST-MODULE will evaluate to the last module created or the current module
being examined.

2.10 Openr, Open, and Close

It is possible to add terms to a module after it has been terminated by endo or endth.
If the module has been incorporated into some other module, either directly (e.g., protecting

mod) or indirectly (by appearing in a module expression), then, after terms has added to the first
module, the other module will no longer be valid and should no longer be used.

One particular goal of this new feature is to allow reductions in a partially defined object.
When it is desired to add more terms to a module, it is opened using

openr 〈ModExp 〉 .

or

openr .

The second form, as usual, opens the last module defined/used. Elements can be added to the open
module using exactly the same syntax as is used to introduce them in the normal way in a module.
All other commands (in, set, show, select, and do) continue work as usual. Normally a module
that is opened should eventually be closed via

close
1This multi-line comment style has semantics similar to the verbatim environment in LATEX.

3

The system separately keeps track of a “last” modules and of an “open” module. Thus it is possible
to show the module INT while the module LIST is open (making INT the “last” module), but still
add elements to LIST. Additions of elements always go into the “open” module.

After a module is re-opened, the variables of that module are not available, but they can be
made available by the previously discussed vars-of operator, specifically one of the form

vars-of .

There is an alternate version of openr called open which creates a hidden object (called “%”)
and includes the given object. When the open object is closed in this case, the hidden object “%”
is deleted. This allows the easy creation of an object that temporarily has more structure than the
given object. The name openr was chosen to suggest “open retentive.” Note: If you show the open
module, it will pretend to have the name of the underlying module with a marker (e.g. “*** open”)
to remind you of this fact.

2.11 Select

A more natural way of selecting a module as the “last” module has been added. One may use

select [〈ModExp 〉] .
select open .

The second form makes the “open” module the “last” module (i.e., the default for show commands,
etc.) “open” can be used as a short name for the “open” module in any of the show commands.
The old command form show select 〈ModExp 〉 has been retained.

2.12 Quietly Evaluate Lisp Forms

The command

eval-quiet 〈LISP 〉

can be used to evaluate a LISP form with the minimum of output during the processing of definitions.
This can be abbreviated to evq.

2.13 Show rules

The commands for controlled application of rules require that you specify rules by number. The
command

show rules [〈ModExp 〉] .

shows a numbered list of rules of the module (defaulting to the “last” module) suitable for use in
specifying a rule in an apply command. See the Section 2.26 for more information. The variant
show all rules . will show all the rules in verbose and all rules modes.

There is a new option all rules which can be use to control the comprehensiveness of rule
display with the show command. By default, rules not in the current module and in certain pre-
defined modules are excluded. The command

set all rules on .

will make the set of rules more comprehensive.

4

2.14 Labeled Rules

A label can now be specified for a rule. The syntax for labels is:

[〈LabelList 〉] 〈Rule 〉

A 〈LabelList〉 is a comma separated list of lists of identifiers. Identifiers must not contain a “.”, or
begin with a digit.

The label need not immediately precede the rule. The form [label] can be thought of a setting
the label for the next rule that is created. Example:

[def1] let x = 100 .

will work as expected. I.e., the label “def1” will be associated with the rule “x = 100” that is
generated internally by the use of let operation.

Labels are shown when rules are displayed, and can likewise be used when rules are specified.
Automatically generated rules (retractions, effects of parameterized instantiation, etc.) have auto-
matically generated names.

2.15 Show a Rule

The command

show rule 〈RuleSpec 〉 .

will show the selected rule. The variant show all rule 〈RuleSpec 〉 . will show a specific rule in
verbose mode.

2.16 Show Modules

The command

show modules .

shows a list of all currently defined modules.
If a module is redefined and is a simple-named module, then it may appear in the output from

this command more than once.

2.17 Show Abbreviation for Module

One can see the abbreviation for a module’s name by using

show abbrev [〈ModExp 〉] .

Abbreviations are aliases for modules that can be used in many top-level commands. The are of the
form M〈number〉. These are just considered abbreviations, and are not really considered part of the
syntax of the language and are thus implementation-dependent.

2.18 Showing Module in Detail

The command

show all [〈ModExp 〉] .

will show a module in a more detailed form (more similar to original release of OBJ3). The default
display is been changed to be somewhat closer to the form that of the definition of the module. The
option verbose controls whether objects are displayed in detailed form by default.

5

2.19 Changes to the Standard Prelude

A new object IDENTICAL has been created that can be used in place of BOOL and provides two
new operators === and =/==. These check for syntactic equality of terms without evaluation or
consideration of operator attributes.

The operator == has been changed to be polymorphic. This can help with parsing problems in
case a condition is of the form E == C, where C is an ambiguous constant (there is more than one
constant with the same name) and E is has a well-defined unique sort.

The module THAT has been renamed to LAST-TERM, and the operator [that] has been
renamed to [term].

The module RAT has been slightly changed so that the built-in constant values are printed like
1/2, not 1 / 2, and the same syntax (1/2) can be used for the input of these constants. (Previously,
there was no syntax for the input of the constants.)

The object BUILT-IN has be modified to allow the creation of built-in subterms of RHSs of rules.
The default syntax is “built-in: 〈Lisp〉”, where the Lisp expression is represents a function that
takes one argument, which is a substitution, and produces two values, a term which is the intended
instantiation for this subterm, and a success indicator. In general, it will be necessary to deal with
the incompatibility of the Sort Built-in with the sorts of other operators in the RHS. Here is a sketch
of a use of this feature:

op r : Universal -> A .
var X : A .
eq f(X) = X + r(built-in: (lambda (u) (create-term u))) .
eq r(X) = X .

Note that “built-in:” is now a very special keyword, and cannot be used in any other context
(this can be disabled by “ev (setq obj BUILT-IN$keyword nil)”).

The object LISP has been added that provides a built-in Lisp sort. The default syntax is “lisp:
〈Lisp〉”. This can be used to allow the use of string data with Lisp syntax for the strings. The
keyword that introduces the data (above “lisp:”) can be changed to be some other symbol by
setq-ing the variable obj LISP$keyword to that other token (e.g. “string:”). Note that “lisp:”
is now a very special keyword, and cannot be used in any other context (this can be disabled by “ev
(setq obj LISP$keyword nil)”).

2.20 Tracing of Rewriting

The options trace and trace whole are now independent and the format of the output has been
made clearer in both cases. (It was the case that if trace was off, then the setting of trace whole
was ignored.)

2.21 Files and Directories

The top-level command

cd 〈Directory 〉

changes the current directory for the running instance of OBJ to be the given directory or the current
user’s home directory if the directory is omitted. The command cd can be used to change to one’s
home directory.

The command cwd reports the current working directory.
The command

ls

6

lists the files in the current working directory.
If a file name begins with “ /”, then this will be expanded to the user’s home directory in most

contexts.
(Note: these features are somewhat system dependent, and, because of portability problems,

may not exist in all versions of OBJ.)

2.22 Command Line Arguments

In the AKCL version of OBJ3, there are some special command line arguments. These are pairs of
these forms

-in 〈FileName 〉
-inq 〈FileName 〉
-evq 〈FileName 〉

The first two forms cause a file to be read in as OBJ3 starts up, either with a trace or quietly. The
last form will quietly load a Lisp file on startup.

2.23 Variables in Reductions

Variables are now allowed (with a warning) in terms for reduction and many other contexts. The
variables are treated as constants of appropriate sorts. This can be used to help find parsing problems
since you can now provide subterms of a larger term to see if they parse and they may now contain
variables.

2.24 Term and Show Term

The commands for the controlled reduction of a term operate by applying rules (or other actions)
to a single term that is the focus of action. This single term will be called “term” and can be seen
by using the command

show term .

(Initially it has a special undefined value.) This term is is also modified by term reductions (command
red) to be the final result of the reduction (this behavior is the same as in release 1.0). (This
command existed in release 1.0, but it’s behavior is not exactly the same.)

2.25 Start

One can start working on the controlled reduction of a term by giving that term in a start command.

start 〈Term 〉 .

The term given becomes the new focus of action and can be seen by using the show term command.
(To reiterate: this focus is also set by the red command, and so is always the last reduction result
or the current state of the last start-ed term.)

The start command can be used to examine the parse of a given term. After “term” has been
set by start one case use show term to see its structure (in detail with print with parens on).

7

2.26 Apply

The apply command allows the selective application of rules (or other actions) at specified places
in the current term. Furthermore, rules can be instantiated before they are applied. The syntax
is rather complex: An apply command involves an action, an optional instantiation, a range, and
a selected subterm. These elements will be discussed in the following subsections. A sketch of the
syntax of the apply command is

apply action [instantiation] range selection

2.26.1 Action

An action is either a request to print the subterm, to reduce the subterm, or to apply a selected rule
(possibly reversed) to a subterm.

print
reduction
red
〈ModId 〉.〈Int 〉
-〈ModId 〉.〈Int 〉
〈ModId 〉.〈Id 〉
-〈ModId 〉.〈Id 〉

The last four forms request the 〈Int〉th rule of module 〈ModId〉 or that rule with the given Id as one
of its labels (as shown by a show rules command), and that rule reversed. The 〈ModId〉 must be
a simple named module. This is a case where module name abbreviations are useful. If a label is
used and multiple rules have that label, then the intent (this is not yet implemented) is to have the
of rules be used in place of a single rule.

There are two special actions that allow the use of the implicit retract rules.

retr
-retr with sort 〈Sort 〉

The first rule applies the retract rules at the given point. These are rules of the form r:A>B(X:A)
= X:A. The second form allows the introduction of a retract using the reversal of this rule; the sort
given corresponds to B in r:A>B(X:A) = X:A.

2.26.2 Instantiation

When rules are reversed there may be variables in the new RHS that don’t appear in the LHS. E.g.,

eq X * 0 = 0

reversed is

eq 0 = X * 0

In cases like this, it is logically necessary to specify a binding of the variable X in order to be able to
apply the rule reversed. It is natural to allow this instantiation in all cases (even for non-reversed
rules). Specifying an instantiation may make it possible to apply a rule without specifying a specific
subterm (use within as the range, as discussed next).

An instantiation is specified by giving a substitution that specifies the bindings of some variables
as a list of equations separated by commas (after the rule specification and delimited by with).

with 〈Var 〉 = 〈Term 〉 {, 〈Var 〉 = 〈Term 〉}. . .

8

The variables bound must appear somewhere in the rule.
If some variable appears in the RHS, but not the LHS, and no binding is given, no warning is

given. It is rather easy to notice that this has been done, since a variable will be introduced into
the current term.

Instantiation is ignored if the action is to print or reduce.

2.26.3 Within or At

Reduction and printing are always for a whole subterm. Applying a rule can have one of two ranges
either it is applied exactly “at” the selected subterm (see the next subsection) or it is applied
anywhere “within” the selected subterm. In this latter case, if it is applied at a given point, it
won’t be reapplied at that point or within the resulting subterm at that point.

2.26.4 Selection of Subterm

There are three basic kinds of selection: selection of an occurrence, subsequence (for associative
operators), or subset (for associative commutative operators). There are also compositions of these
basic selectors and in any case the selection process starts with the current term.

Subterms and argument positions are numbered from 1.
Selection of an occurrence looks like

(〈Int 〉. . .)

The selection process proceeds from the starting term by successively passing to the argument
positions specified by the successive integers. E.g., if the term is (a + (c * 2)), then the occurrence
(2 1) selects the subterm c. The selector () simply selects the whole subterm (it is a selector, but
it doesn’t cause a shift in focus).

Selection of a subsequence has two forms

[〈Int 〉 .. 〈Int 〉]
[〈Int 〉]

Spaces are required around the “..”. Selecting [k] is the same as selecting [k .. k]. This
kind of selection is only appropriate for terms whose top operator is associative (or associative and
commutative). For such operators, a tree of terms formed with that operator is naturally viewed
as the sequence of the terms at the leaves of this tree. The form [〈Int 〉] selections the 〈Int〉th
subterm of this logical sequence. (It doesn’t form a sequence of length one, which isn’t possible,
in fact.) The form [〈Int 〉 .. 〈Int 〉] forces the restructuring of the term so that the specified
range of terms of the logical sequence are a proper subterm of the whole term and then selects that
term as the next current subterm. This means that a selection may change the exact structure of
the term (so that a print request may affect the structure of the term).

Selection of a subset of the terms has the form

{ 〈Int 〉 [, 〈Int 〉]. . . }

(Here the “{}” are not syntactic meta-notation, they just stand for corresponding characters.) No
spaces are required within this notation. This kind of selection is only appropriate for terms with
top operators that are associative and commutative. If an 〈Int〉 is repeated, these repetitions are
ignored. This selector forces the given subset of the logical sequence (or more properly “bag”) of
terms that are under the top operator to be a proper subterm and selects that term as the next
current subterm. The order of the subterms in the “{}”s affects the order of appearance of these
terms in the selected subterm. For example, in INT, if the current term is (when fully parenthesized)
“(1 * (2 * (3 * (4 * 5))))”, the command

apply print at 1,3,5 .

9

is performed, then the resulting structure term is “((1 * (3 * 5)) * (2 * 4))”.
You can specify the top of “term” by either of the selectors

top
term

It only really makes sense to use these once and they can be omitted unless there is no other selector.
In fact, one could also use the selector ().

2.26.5 Composition of Selectors

You can form a composition of selectors by separating them by of. For example,

{3,1,2} of [4] of (2 3 1)
[2 .. 5] of (1 1) of term

The interpretation of such a composition is like functional composition, the selection on the right is
done first, then the middle one on the result of that selection, and then, finally, the one on the left.
Note that this is the opposite of the order of interpretation of the elements of an occurrence (e.g.,
(2 1)).

2.26.6 Apply command and examples

The form of an apply command is apply followed (in order) by the action, possibly a substitution,
within or at, and a composition of selectors. The schema for the apply command is

apply { reduction | red | print | retr |
-retr with sort 〈Sort 〉 |
〈RuleSpec 〉 [with 〈VarId 〉 = 〈Term 〉{,

〈VarId 〉 = 〈Term 〉}. . .] }
{ within | at }
〈Selector 〉 { of 〈Selector 〉 }. . .

(Here “{}” are being used for syntactic grouping.) The resulting value of the current term is always
printed after an apply command is performed. As stated before, when try reduce conditions is
on, tests are forced to return true in rules that are explicitly applied.

Here are some examples.

apply G.1 at term .
apply -G.1 at term .
apply -G.2 with X = a at term .
apply print at term .
apply reduction at (2 1) .
apply G.1 at () .
apply X.3 at {2} .
apply X.3 at {3,1,2} .
apply G.2 at [2 .. 4] .
apply G.1 at [2] .
apply X.1 at {2,4} of [4] of (2 2) .
apply X.1 at {2,4} of [4 .. 4] of (2 2) of top .

The command apply ? . will display a summary of the usage of the apply command.

10

2.26.7 Conditional Rules

Allowing the controlled application of conditional rules requires, in general, that it be possible to shift
the focus of reduction to the (instantiated) condition of a rule, thus allowing controlled application
of rules to this condition. This is done by maintaining a stack of pending actions and pushing the
application of a rule on the stack if its LHS matches, but it has a condition that needs to be carefully
evaluated. When a condition reduces to “true” the delayed application of a rule is completed, and
focus shifts back to the resulting term. If the condition instead reduces to “false”, then application
of the rule is skipped, but you still shift focus back to the previous term.

In fact, it is possible to request that conditions of conditional equations be directly reduced. The
command

set reduce conditions on .

requests this treatment. Naturally, the default behavior can then be reinstated by

set reduce conditions off .

(Either all nontrivial conditions are to be carefully evaluated, or none are.) One reason that one
might prefer that the condition be directly evaluated is that, if the top operator of the LHS has
special pattern matching attributes, then when the rule is applied all possible matches are tested
against the condition until a successful case is found. On the other hand, with controlled application,
only one match is attempted (an this is part of the reason that [2 .. 3], and the other forms, are
needed).

Here is a small example. The object X has the definition

obj X is
sort A .
pr QID .
subsort Id < A .
op f : A -> A .
var X : A .
cq f(X) = f(f(X)) if (f(X) == ’a) .
eq f(’b) = ’a .

endo

Here is a sample output trace.

==
start f (’b) .
==
apply X.1 at term .
shifting focus to condition
condition(1) Bool: f(’b) == ’a
==
apply X.2 within term .
condition(1) Bool: ’a == ’a
==
apply red at term .
condition(1) Bool: true
condition is satisfied, applying rule
shifting focus back to previous context
result A: f(f(’b))

11

Note that when actions are pending, “condition” is printed instead of “result” and the number
of conditions being reduced (the number of pending actions) is printed in parentheses.

If you are evaluating a condition and want to force either success or failure you can use the
following commands

start true .
start false .

For example, the above example could have continued from “apply X.1 at term” with

==
start false .
condition(1) Bool: false
condition is not satisfied, rule not applied
shifting focus back to previous context
result A: f(’b)

Thus, you can use this to abandon reductions that you no longer wish to perform. Use of “start
true .” can easily produce incorrect reduction results, i.e. that do not follow by order-sorted
equational deduction. If it is known that the condition being replaced is true, then this is not an
issue. However, you cannot perform a controlled reduction in the middle of doing another one, and
then continue the first reduction. (A new start causes the current state of the current term to be
lost.)

If you want to see a description of all the pending actions you can use the command

show pending .

Which prints the details about the terms, rules, conditions, and replacements that are all currently
pending. For example, the output of this command might look like

pending actions
1| in f(’b) at top
| rule cq f(X) = f(f(X)) if f(X) == ’a
| condition f(’b) == ’a replacement f(f(’b))
2| in f(’b) == ’a at f(’b)
| rule cq f(X) = f(f(X)) if f(X) == ’a
| condition f(’b) == ’a replacement f(f(’b))
3| in f(’b) == ’a at f(’b)
| rule cq f(X) = f(f(X)) if f(X) == ’a
| condition f(’b) == ’a replacement f(f(’b))

If you use the range specification within and the rule is conditional, only one (at most) appli-
cation of the rule will be reduced in a controlled way. You will be warned about this by a message
like

applying rule only at first position found: f(’b)

2.27 Identity Attribute Rule Completion Process

The handling of pattern matching for operators with identities requires a (partial) identity rule
completion process which may result in some automatically created rules and may also result in
special “id conditions” (that are normally not displayed). The partial completion and the id condition
generation will be called id processing. The point is that rewriting modulo identity can often lead
to non-termination problems. The id processing done in OBJ3 release 2.0 restricts the standard
identity completion process to avoid simple cases of non-termination by adding id conditions to

12

rules (so that obviously problematic instances are disallowed) and also by discarding rule instances
whose lefthand sides are variables (because their implementation as rules is problematic); in addition,
rules subsumed by other rules are omitted for the sake of efficiency. Note: strategies of operators are
not taken into account when testing for non-termination. It is possible that a rule will be considered
as non-terminating, when non-termination is actually avoided because of the evaluation strategies.
In verbose mode, many details of this process are displayed. When rules are displayed in a verbose
way (either in verbose mode, or with a show all command), then the special id conditions will be
displayed. When a module is processed, in verbose mode, some of the details of the completion
process are shown, including rule instances that are generated and an indication of modifications
to or additions of rules. The rules that have been automatically added by id processing will have
automatically generated labels of the form “compl〈NAT〉”. An alternative approach to avoiding non-
termination is to make the problematic rules conditional so as to prevent the undesired rewriting.
The object IDENTICAL, provided in the standard prelude and used in this example, is BOOL with
the addition of two operations _===_ and _=/==_ which test for syntactic equality and inequality,
and are very useful hand-crafted identity conditions.

For example, if the following module is processed in verbose mode,

obj TST is
sort A .
ops c d e 0 1 : -> A .
vars X Y : A .
op _+_ : A A -> A [assoc comm id: 0] .
eq X + Y = c .

jbo

the system will produce this output:

==
obj TST
Performing id processing for rules
For rule: eq X + Y = c
Generated valid rule instances:
eq X + Y = c
Generated invalid rule instances:
eq Y = c
eq X = c
Modified rule: eq X + Y = c if not (Y === 0 or X === 0)

Done with id processing for rules
==

In this example no new rule is generated, but the given rule had a special “id condition” added, which
is not always displayed. A rule instance is invalid if the LHS is a variable (this is an implementation
limitation), or if it would “obviously” cause non-termination, e.g. the LHS and RHS are the same
term.

OBJ> show rule .1 .
rule 1 of the last module
eq X + Y = c

OBJ> show all rule .1 .
rule 1 of the last module
eq X + Y = c if not (Y === 0 or X === 0)

OBJ>

13

For a somewhat more complicated example consider:

obj TST is
pr TRUTH-VALUE .
sort A .
op 0 : -> A .
op _+_ : A A -> A [assoc id: 0] .
op 1 : -> A .
op _*_ : A A -> A [assoc id: 1] .
op f : A -> A .
ops a b c d e f : -> A .
var X Y : A .
eq (X * Y) + f(X * Y) = f(X) .

endo

The verbose output would be:

==
obj TST
Performing id processing for rules
For rule: eq (X * Y) + f(X * Y) = f(X)
Generated valid rule instances:
eq (X * Y) + f(X * Y) = f(X)
eq X + f(X) = f(X)
eq Y + f(Y) = f(1)
eq f(0) = f(1)
Generated invalid rule instances:
eq f(0) = f(0)
Added rule: [compl16] eq f(0) = f(1)
Added rule: [compl17] eq X + f(X) = f(X) if not X === 0
Modified rule: eq (X * Y) + f(X * Y) = f(X) if not (X === 0 and Y ===
1)

Done with id processing for rules
==

In this case, the rule compl16 was added because the top operator is f not + . In the other case,
rule compl17, the LHS of the rule is a strict generalization of the original LHS, i.e. the original rule
LHS cannot match the new one (X + f(X)). It might make sense to delete the original rule, but
this is never done. Note also that confluence is assumed, as always, and in this context this means
confluence for all rule instances and for all ways of matching. Here this means that it is valid not
to add the rule eq Y + f(Y) = f(1). (Of course, this is a very contrived example and the original
system was not confluent.)

2.28 Help commands

The command ? (note: no “.”) produces the following output

Top-level definitional forms include: obj, theory, view, make
The top level commands include:
q; quit --- to exit from OBJ3
show --- for further help: show ? .
set --- for further help: set ? .
do --- for further help: do ? .

14

apply --- for further help: apply ? .
other commands:

in <filename>
red <term> .
select <module-expression> .
cd <directory>; ls; pwd
start <term> .; show term .
open [<module-expression>] .; openr [<module-expression>] .; close
ev <lisp>; evq <lisp>

The “;”s are only used to separate alternatives.

2.29 Problems

It is possible that the rules (as seen in a show rules command) will be reordered is curious ways
when modules are constructed. There may be odd repetitions of rules in certain cases.

3 Syntax

This section gives the syntax of the new features of for OBJ3, using the an extended BNF notation
as an extension of the presentation of the syntax of OBJ3 in [1]. The symbols { and } are used as
meta-parentheses; the symbol | is used to separate alternatives; [] pairs enclose optional syntax; . . .
indicates 0 or more repetitions of preceding unit; and "x" denotes x literally. As an application of
this notation, A{,A}. . . is an idiom used for a non-empty list of As separated by commas.
is used to mark the omission of other alternatives which are described in [1]. Finally, --- indicates
comments in the syntactic description (as opposed to comments in OBJ3 code).

--- modules ---

〈ModElt 〉 ::= |
{ using | extending | protecting |

including } 〈ModExp 〉 . |
principal-sort 〈Sort 〉 . |
let 〈Sym 〉 [: 〈Sort 〉] = 〈Term 〉 . |
let 〈Sym 〉 [: 〈Sort 〉] = . |
vars-of [〈ModExp 〉] .

〈Sym 〉 --- any operator syntax symbol (blank delimited)

--- top-level ---

〈OBJ-input 〉 ::= { |
〈RuleLabel 〉
openr [〈ModExp 〉] . |
open [〈ModExp 〉] . |
close |
start 〈Term 〉 . |
〈Apply 〉
}. . .

〈RuleLabel 〉 ::= [〈Id 〉. . .{,〈Id 〉. . .}. . .]

15

〈Apply 〉 ::=
apply { reduction | red | print | retr |

-retr with sort 〈Sort 〉 |
〈RuleSpec 〉 [with 〈VarId 〉 = 〈Term 〉{,

〈VarId 〉 = 〈Term 〉}. . .] }
{ within | at }
〈Selector 〉 { of 〈Selector 〉 }. . .

〈RuleSpec 〉 ::= [-][〈ModId 〉].〈RuleId 〉

〈RuleId 〉 ::= 〈Natural Number 〉 | 〈Id 〉

〈Selector 〉 ::= term | top |
(〈Int 〉. . .) |
"[" 〈Int 〉 [.. 〈Int 〉] "]" |
"{"〈Int 〉{,〈Int 〉}. . ."}"
--- note that "()" is a valid selector

〈Commands 〉 --- show, set, do, select
in particular:

select [〈ModExp 〉] .
show [all] rules [〈ModExp 〉] .
show [all] rule 〈RuleSpec 〉 .
show vars .
show term .
select open .
set reduce conditions 〈On/Off 〉 .
set all rules 〈On/Off 〉
show [all] rule 〈RuleSpec 〉
eval-quiet 〈LISP 〉
show abbrev [〈ModExp 〉] .
show modules .
show all [〈ModExp 〉] .
set verbose 〈On/Off 〉 .
show pending .

open --- can use this to refer to the open module in show commands

〈On/Off 〉 ::= on | off

〈Comment 〉 ::= *** 〈Rest-of-line 〉 | ***> 〈Rest-of-line 〉 |
*** (〈Text-with-balanced-parentheses 〉)

--- equivalent forms ---

inc = including
evq = eval-quiet
psort = principal-sort

16

4 Last words

I would like to acknowledge many useful suggestions from José Meseguer that helped improve these
notes. Good Luck!!!

References

[1] Joseph Goguen and Timothy Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, SRI
International, Computer Science Lab, August 1988. Revised version to appear with additional
authors José Meseguer, Kokichi Futatsugi and Jean-Pierre Jouannaud, in Applications of Alge-
braic Specification using OBJ, edited by Joseph Goguen, Derek Coleman and Robin Gallimore,
Cambridge, 1992.

[2] Timothy Winkler and José Meseguer. OBJ3’s Built-ins. SRI International, Menlo Park, CA
94025. Included with OBJ3 releases 2.05 and newer.

17

Contents

1 Introduction 1

2 Descriptions 1
2.1 Verbose mode . 1
2.2 Treatment of Theories . 1
2.3 Including . 1
2.4 Principal Sort . 2
2.5 Vars-of and Show Vars . 2
2.6 Let . 2
2.7 Show Principal Sort . 3
2.8 Comments . 3
2.9 The Last Module . 3
2.10 Openr, Open, and Close . 3
2.11 Select . 4
2.12 Quietly Evaluate Lisp Forms . 4
2.13 Show rules . 4
2.14 Labeled Rules . 5
2.15 Show a Rule . 5
2.16 Show Modules . 5
2.17 Show Abbreviation for Module . 5
2.18 Showing Module in Detail . 5
2.19 Changes to the Standard Prelude . 6
2.20 Tracing of Rewriting . 6
2.21 Files and Directories . 6
2.22 Command Line Arguments . 7
2.23 Variables in Reductions . 7
2.24 Term and Show Term . 7
2.25 Start . 7
2.26 Apply . 8

2.26.1 Action . 8
2.26.2 Instantiation . 8
2.26.3 Within or At . 9
2.26.4 Selection of Subterm . 9
2.26.5 Composition of Selectors . 10
2.26.6 Apply command and examples . 10
2.26.7 Conditional Rules . 11

2.27 Identity Attribute Rule Completion Process . 12
2.28 Help commands . 14
2.29 Problems . 15

3 Syntax 15

4 Last words 17

18

