Testing Library
Specifications by Verifying
Conformance Tests

Joseph R. Kiniry, Daniel M. Zimmerman, Ralph Hyland
ITU Copenhagen, UW Tacoma, UCD Dublin

6th International Conference on Tests & Proofs
Prague, Czech Republic - 3| May 2012

The Main ldea

® good library specifications are essential for
modular verification

® many libraries have no specifications, but
good conformance tests

® we can use conformance tests to ensure
that post hoc library specifications are
correct and useful

Tuesday, 19 June, 2012

Motivation:
JML and Static Checking

® behavior of Java programs can be specified
with Java Modeling Language (JML)

® modular verification can be performed with
extended static checkers like ESC/Java2

® we need good specifications for classes not
being checked/verified!

Tuesday, 19 June, 2012

Motivation:
Java Class Library

® the Java class library is huge (1000s of classes
in over 100 packages)

® it has no formal specs

® its documentation is primarily informal
English in Javadoc comments

Tuesday, 19 June, 2012

Motivation:
Java Class Library

® we want correct specs for the Java class
library - but correct isn’t enough

® precondition true, postcondition true,
Invariant true...

® we also want useful specs, so we can actually
verify nontrivial programs against them

Tuesday, 19 June, 2012

Motivation:
Java Class Library

® Java |.4 library specs shipped with JML2
were hand-written as needed, in ad hoc
fashion, over several years

® their correctness has primarily been a
matter of trial and error

® no way to measure their utility other than
by attempting to verify programs

Tuesday, 19 June, 2012

Example: java.lang.Byte

public /*@ pure @™/ final class Byte extends Number implements Comparable

{

//@ public model byte theByte;
/@ represents theByte <- byteValue();

(@)
@ public normal_behavior
@ requires Character.MIN_RADIX <= r && r <= CharacterMAX_RADIX;
@ assignable \nothing;
@ ensures \result <==>
@) s 1= null && !s.equals("") &&
@) (\forall int i;0 <= i && i < s.length();
@) Character.digit(s.charAt(i), r) != -1);
@ aso And another 200 lines after that,
@ public normal_behavior .
@ requires forcmith®ds<of jevafaprgBytehx_RADIX;
@ assignable \nothing;
@ ensures \result <==>
@) s 1= null && !s.equals("") &&

o

Tuesday, 19 June, 2012 -

Better Specifications
through lesting

® idea: use the conformance test suite for
the Java class library — the Java Compatibility
Kit (JCK) — to evaluate library specifications

Tuesday, 19 June, 2012

Better Specifications
through lesting

e the |CK tests are operational specifications for
the behavior of the Java class library

® they should be statically verifiable against
post hoc JML specifications

o cffectively, we can test our specifications by
verifying the existing tests

Tuesday, 19 June, 2012

Verifying Unit Tests

® we assume a unit test framework with an
assert method to check Boolean conditions

and a fail method to trigger a failure without
a condition check

® in order to statically verify unit tests, we add
very simple specifications to these methods:

o {x} assert(x) {x}
o {false} fail() {true}

Tuesday, 19 June, 2012

Verifying Unit Tests

® unit tests can then be statically verified as
follows:

® calls to library methods are verified
against the library specs as necessary

® calls to assert(x) will verify properly if x is
true, exactly the desired behavior

® calls to fail will never verify (precondition
false) — but such calls are unreachable in
tests that pass

Tuesday, 19 June, 2012

Formal
Contract the Design

® the specification process based on this idea
is called Formal Contract the Design (FCTD)

® Contract the Design is the dual of Design by
Contract — writing contracts for a program
dafter the program has been written

® in FCTD, contracts are written for classes
with informal documentation and unit tests
are used to validate them

Tuesday, 19 June, 2012

The FCTD Process
(Java/JML) for Class C

® write an initial ML spec for C, using only
Javadoc for C and any classes on which C
depends (not source code or JCK tests)

® refine the spec for C until it statically
verifies against C’s source code, without
looking at C’s source code

® when the C spec can be statically verified
against C, it is correct

Tuesday, 19 June, 2012

The FCTD Process
(Java/JML) for Class C

® attempt to statically verify the tests for C
using the new spec — the tests are only
checked and never run!

® define spec utility as the percentage of the
tests for C that statically verify

® refine the C spec until its utility is 100%
(making sure it remains correct!)

® |ooking at test code to see what tests
do and expect is OK if necessary

Tuesday, 19 June, 2012

Example -
java.util.String.getChars()

public void getChars(int srcBegin, int srcEnd,
char[] dst, int dstBegin)

® copies characters from a string into a
destination array

® various things can go wrong depending on the
supplied parameters

Tuesday, 19 June, 2012

Example -
java.util.String.getChars()

® Javadoc for getChars() describes situations
that cause IndexOutOfBoundsException, but
does not mention NullPointerException

® original JML2 spec written for getChars() did
not account for NullPointerException

® a JCK test (the very first one for getChars()!)
checks for NullPointerException, so FCTD
captures it even though it is undocumented

Tuesday, 19 June, 2012

Current Status

® we have specified several classes in the Java
standard library using FCTD, concentrating
on commonly-used classes such as the
Collections Framework

® obviously, it will take significant effort to
(re)specify the entire Java standard library

® the process is a lot easier when we can
leverage the JCK to check our specs

Tuesday, 19 June, 2012

Broader Applicability

e FCTD is directly applicable to libraries with
automated conformance tests in languages/
runtimes with available modular static
verification tools

® FCTD can also be used when performing
CTD for non-library programs if high-
coverage, high-quality unit tests are available

Tuesday, 19 June, 2012

Conclusion

® Formal Contract the Design allows us to use
existing operational specifications to evaluate
new denotational specifications

® currently being used to develop the next
generation of Java class library specifications

® future:integration with specification
inference methods, integration with test
generation methods that don’t use specs,
other ways to measure spec utility

Tuesday, 19 June, 2012

