
Testing Library 
Specifications by Verifying 

Conformance Tests

Joseph R. Kiniry, Daniel M. Zimmerman, Ralph Hyland
ITU Copenhagen, UW Tacoma, UCD Dublin

6th International Conference on Tests & Proofs
Prague, Czech Republic - 31 May 2012

Tuesday, 19 June, 2012



The Main Idea

• good library specifications are essential for 
modular verification

• many libraries have no specifications, but 
good conformance tests

• we can use conformance tests to ensure 
that post hoc library specifications are 
correct and useful

Tuesday, 19 June, 2012



Motivation: 
JML and Static Checking

• behavior of Java programs can be specified 
with Java Modeling Language (JML)

• modular verification can be performed with 
extended static checkers like ESC/Java2 

• we need good specifications for classes not 
being checked/verified!

Tuesday, 19 June, 2012



Motivation: 
Java Class Library

• the Java class library is huge (1000s of classes 
in over 100 packages)

• it has no formal specs

• its documentation is primarily informal 
English in Javadoc comments

Tuesday, 19 June, 2012



Motivation: 
Java Class Library

• we want correct specs for the Java class 
library - but correct isn’t enough 

• precondition true, postcondition true, 
invariant true...

• we also want useful specs, so we can actually  
verify nontrivial programs against them

Tuesday, 19 June, 2012



Motivation: 
Java Class Library

• Java 1.4 library specs shipped with JML2 
were hand-written as needed, in ad hoc 
fashion, over several years

• their correctness has primarily been a 
matter of trial and error

• no way to measure their utility other than 
by attempting to verify programs

Tuesday, 19 June, 2012



public /*@ pure @*/ final class Byte extends Number implements Comparable
{

    //@ public model byte theByte;
    //@ represents theByte <- byteValue();

    /*@ 
      @	

 public normal_behavior
      @	

   requires Character.MIN_RADIX <= r && r <= Character.MAX_RADIX;
      @   assignable \nothing;
      @	

   ensures \result <==>
      @	

 	

   s != null && !s.equals("") &&
      @	

 	

   (\forall int i; 0 <= i && i < s.length(); 
      @	

 	

 	

    Character.digit(s.charAt(i), r) != -1);
      @     also
      @	

 public normal_behavior
      @   requires Character.MIN_RADIX <= r && r <= Character.MAX_RADIX;
      @   assignable \nothing;
      @   ensures \result <==>
      @               s != null && !s.equals("") &&
      @               (\forall int i; 1 <= i && i < s.length() && s.charAt(0) == '-';
      @                        Character.digit(s.charAt(i), r) != -1);
      
      model public static pure boolean parseable( String s, int r ) {
        try { Byte ss = Byte.valueOf(s,r); return true; } 
        catch (Exception e) { return false; }     
      }

      @ public normal_behavior
      @   assignable \nothing;
      @   ensures \result == parseable( s, 10 );

      model public static pure boolean parseable( String s ) {
        try { Byte ss = Byte.valueOf(s); return true; }   
        catch (Exception e) { return false; }
      }     

      @	

 public normal_behavior
      @	

  {|
      @	

    requires nm != null && 
      @             nm.substring(0,2).equalsIgnoreCase("0x");	

 // posititve hex
      @	

    ensures  \result == parseable(nm.substring(2), 16);
      @	

   also
      @	

    requires nm != null && 
      @             nm.substring(0,3).equalsIgnoreCase("-0x");	

 // negative hex
      @	

    ensures  \result == parseable(nm.substring(3), 16);
      @	

   also
      @	

    requires nm.startsWith("#");  	

 	

 	

 // positive hex
      @	

    ensures \result == parseable(nm.substring(1), 16);
      @	

   also
      @	

    requires nm.startsWith("-#");	

 	

 	

 // negative hex
      @	

    ensures \result == parseable(nm.substring(2), 16);
      @	

   also
      @	

    requires nm.startsWith("O");  	

 	

 	

 //positive octal
      @	

    ensures  \result == parseable(nm.substring(1), 8);
      @	

   also
      @	

    requires nm.startsWith("-O");	

 	

 	

 // negative octal
      @	

    ensures  \result == parseable(nm.substring(2), 8);
      @	

   also
      @	

    ensures  \result == parseable(nm);  // positive or negative byte, radix 10
      @	

  |}

      model public static pure boolean decodeable( String nm ) {
        try { decode(nm); return true; }
        catch (Exception e) { return false; }
      }
      @*/

    public static final byte MIN_VALUE;
    public static final byte MAX_VALUE;
    public static final /*@non_null@*/ Class TYPE;

    /*@ public normal_behavior
      @   assignable theByte;
      @   ensures theByte == value;
      @*/
    public Byte(byte value);

    /*@ public normal_behavior
      @   requires parseable(s);
      @   assignable theByte;
      @   ensures theByte == parseByte(s);
      @ also
      @ public exceptional_behavior
      @   requires !parseable(s);
      @   assignable \nothing;
      @   signals(NumberFormatException);
      @*/
    public Byte(String s) throws NumberFormatException;

Example: java.lang.Byte

And another 200 lines after that,
for methods of java.lang.Byte!

Tuesday, 19 June, 2012



Better Specifications 
through Testing

• idea: use the conformance test suite for 
the Java class library – the Java Compatibility 
Kit (JCK) – to evaluate library specifications

Tuesday, 19 June, 2012



Better Specifications 
through Testing

• the JCK tests are operational specifications for 
the behavior of the Java class library

• they should be statically verifiable against 
post hoc JML specifications

• effectively, we can test our specifications by 
verifying the existing tests

Tuesday, 19 June, 2012



Verifying Unit Tests

• we assume a unit test framework with an 
assert method to check Boolean conditions 
and a fail method to trigger a failure without 
a condition check

• in order to statically verify unit tests, we add 
very simple specifications to these methods: 

• {x} assert(x) {x}

• {false} fail() {true}

Tuesday, 19 June, 2012



Verifying Unit Tests

• unit tests can then be statically verified as 
follows:

• calls to library methods are verified 
against the library specs as necessary

• calls to assert(x) will verify properly if x is 
true, exactly the desired behavior

• calls to fail will never verify (precondition 
false) – but such calls are unreachable in 
tests that pass

Tuesday, 19 June, 2012



Formal 
Contract the Design
• the specification process based on this idea 

is called Formal Contract the Design (FCTD)

• Contract the Design is the dual of Design by 
Contract – writing contracts for a program 
after the program has been written

• in FCTD, contracts are written for classes 
with informal documentation and unit tests 
are used to validate them 

Tuesday, 19 June, 2012



The FCTD Process 
(Java/JML) for Class C

• write an initial JML spec for C, using only 
Javadoc for C and any classes on which C 
depends (not source code or JCK tests)

• refine the spec for C until it statically 
verifies against C’s source code, without 
looking at C’s source code

• when the C spec can be statically verified 
against C, it is correct

Tuesday, 19 June, 2012



The FCTD Process 
(Java/JML) for Class C
• attempt to statically verify the tests for C 

using the new spec – the tests are only 
checked and never run!

• define spec utility as the percentage of the 
tests for C that statically verify

• refine the C spec until its utility is 100% 
(making sure it remains correct!) 

• looking at test code to see what tests 
do and expect is OK, if necessary

Tuesday, 19 June, 2012



Example - 
java.util.String.getChars()

public void getChars(int srcBegin, int srcEnd,
                               char[] dst, int dstBegin)

• copies characters from a string into a 
destination array

• various things can go wrong depending on the 
supplied parameters

Tuesday, 19 June, 2012



Example - 
java.util.String.getChars()

• Javadoc for getChars() describes situations 
that cause IndexOutOfBoundsException, but 
does not mention NullPointerException

• original JML2 spec written for getChars() did 
not account for NullPointerException

• a JCK test (the very first one for getChars()!) 
checks for NullPointerException, so FCTD 
captures it even though it is undocumented

Tuesday, 19 June, 2012



Current Status

• we have specified several classes in the Java 
standard library using FCTD, concentrating 
on commonly-used classes such as the 
Collections Framework

• obviously, it will take significant effort to  
(re)specify the entire Java standard library

• the process is a lot easier when we can 
leverage the JCK to check our specs

Tuesday, 19 June, 2012



Broader Applicability

• FCTD is directly applicable to libraries with 
automated conformance tests in languages/
runtimes with available modular static 
verification tools

• FCTD can also be used when performing 
CTD for non-library programs if high-
coverage, high-quality unit tests are available

Tuesday, 19 June, 2012



Conclusion

• Formal Contract the Design allows us to use 
existing operational specifications to evaluate 
new denotational specifications

• currently being used to develop the next 
generation of Java class library specifications 

• future: integration with specification 
inference methods, integration with test 
generation methods that don’t use specs, 
other ways to measure spec utility

Tuesday, 19 June, 2012


